Suppr超能文献

DPI-MoCo:用于4D CBCT的深度先验图像约束运动补偿重建

DPI-MoCo: Deep Prior Image Constrained Motion Compensation Reconstruction for 4D CBCT.

作者信息

Hu Dianlin, Zhang ChenCheng, Fei Xuanjia, Yao Yi, Xi Yan, Liu Jin, Zhang Yikun, Coatrieux Gouenou, Coatrieux Jean Louis, Chen Yang

出版信息

IEEE Trans Med Imaging. 2025 Mar;44(3):1243-1256. doi: 10.1109/TMI.2024.3483451. Epub 2025 Mar 17.

Abstract

4D cone-beam computed tomography (CBCT) plays a critical role in adaptive radiation therapy for lung cancer. However, extremely sparse sampling projection data will cause severe streak artifacts in 4D CBCT images. Existing deep learning (DL) methods heavily rely on large labeled training datasets which are difficult to obtain in practical scenarios. Restricted by this dilemma, DL models often struggle with simultaneously retaining dynamic motions, removing streak degradations, and recovering fine details. To address the above challenging problem, we introduce a Deep Prior Image Constrained Motion Compensation framework (DPI-MoCo) that decouples the 4D CBCT reconstruction into two sub-tasks including coarse image restoration and structural detail fine-tuning. In the first stage, the proposed DPI-MoCo combines the prior image guidance, generative adversarial network, and contrastive learning to globally suppress the artifacts while maintaining the respiratory movements. After that, to further enhance the local anatomical structures, the motion estimation and compensation technique is adopted. Notably, our framework is performed without the need for paired datasets, ensuring practicality in clinical cases. In the Monte Carlo simulation dataset, the DPI-MoCo achieves competitive quantitative performance compared to the state-of-the-art (SOTA) methods. Furthermore, we test DPI-MoCo in clinical lung cancer datasets, and experiments validate that DPI-MoCo not only restores small anatomical structures and lesions but also preserves motion information.

摘要

4D锥束计算机断层扫描(CBCT)在肺癌的自适应放射治疗中起着关键作用。然而,极其稀疏的采样投影数据会在4D CBCT图像中导致严重的条纹伪影。现有的深度学习(DL)方法严重依赖大规模的带标签训练数据集,而在实际场景中这些数据集很难获得。受此困境限制,DL模型在同时保留动态运动、消除条纹退化和恢复精细细节方面往往面临困难。为了解决上述具有挑战性的问题,我们引入了一种深度先验图像约束运动补偿框架(DPI-MoCo),该框架将4D CBCT重建解耦为两个子任务,包括粗略图像恢复和结构细节微调。在第一阶段,所提出的DPI-MoCo结合先验图像引导、生成对抗网络和对比学习,在保持呼吸运动的同时全局抑制伪影。之后,为了进一步增强局部解剖结构,采用了运动估计和补偿技术。值得注意的是,我们的框架无需配对数据集即可运行,确保了在临床病例中的实用性。在蒙特卡罗模拟数据集中,与最先进的(SOTA)方法相比,DPI-MoCo实现了具有竞争力的定量性能。此外,我们在临床肺癌数据集中测试了DPI-MoCo,实验验证了DPI-MoCo不仅能恢复小的解剖结构和病变,还能保留运动信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验