Suppr超能文献

变换图像超分辨率:一种基于卷积变换器的高效方法。

Transforming Image Super-Resolution: A ConvFormer-Based Efficient Approach.

作者信息

Wu Gang, Jiang Junjun, Jiang Junpeng, Liu Xianming

出版信息

IEEE Trans Image Process. 2024;33:6071-6082. doi: 10.1109/TIP.2024.3477350. Epub 2024 Oct 25.

Abstract

Recent progress in single-image super-resolution (SISR) has achieved remarkable performance, yet the computational costs of these methods remain a challenge for deployment on resource-constrained devices. In particular, transformer-based methods, which leverage self-attention mechanisms, have led to significant breakthroughs but also introduce substantial computational costs. To tackle this issue, we introduce the Convolutional Transformer layer (ConvFormer) and propose a ConvFormer-based Super-Resolution network (CFSR), offering an effective and efficient solution for lightweight image super-resolution. The proposed method inherits the advantages of both convolution-based and transformer-based approaches. Specifically, CFSR utilizes large kernel convolutions as a feature mixer to replace the self-attention module, efficiently modeling long-range dependencies and extensive receptive fields with minimal computational overhead. Furthermore, we propose an edge-preserving feed-forward network (EFN) designed to achieve local feature aggregation while effectively preserving high-frequency information. Extensive experiments demonstrate that CFSR strikes an optimal balance between computational cost and performance compared to existing lightweight SR methods. When benchmarked against state-of-the-art methods such as ShuffleMixer, the proposed CFSR achieves a gain of 0.39 dB on the Urban100 dataset for the x2 super-resolution task while requiring 26% and 31% fewer parameters and FLOPs, respectively. The code and pre-trained models are available at https://github.com/Aitical/CFSR.

摘要

单图像超分辨率(SISR)的最新进展取得了显著性能,但这些方法的计算成本对于在资源受限设备上进行部署而言仍是一项挑战。特别是,基于Transformer的方法利用自注意力机制取得了重大突破,但也带来了高昂的计算成本。为解决这一问题,我们引入了卷积Transformer层(ConvFormer),并提出了基于ConvFormer的超分辨率网络(CFSR),为轻量级图像超分辨率提供了一种有效且高效的解决方案。所提出的方法继承了基于卷积和基于Transformer这两种方法的优点。具体而言,CFSR利用大内核卷积作为特征混合器来替代自注意力模块,以最小的计算开销有效地对长距离依赖关系和广泛的感受野进行建模。此外,我们提出了一种边缘保留前馈网络(EFN),旨在实现局部特征聚合,同时有效地保留高频信息。大量实验表明,与现有的轻量级超分辨率方法相比,CFSR在计算成本和性能之间达到了最佳平衡。在与诸如ShuffleMixer等先进方法进行基准测试时,所提出的CFSR在Urban100数据集上针对x2超分辨率任务实现了0.39 dB的增益,同时所需参数和浮点运算次数分别减少了26%和31%。代码和预训练模型可在https://github.com/Aitical/CFSR获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验