Suppr超能文献

用于单图像超分辨率的轻量级交互式特征推理网络。

Lightweight interactive feature inference network for single-image super-resolution.

作者信息

Wang Li, Li Xing, Tian Wei, Peng Jianhua, Chen Rui

机构信息

School of Computer and Software, Nanjing Vocational University of Industry Technology, Nanjing, 210023, China.

College of Information Science and Technology, College of Artificial Intelligence, Nanjing Forestry University, Nanjing, 210037, China.

出版信息

Sci Rep. 2024 May 21;14(1):11601. doi: 10.1038/s41598-024-62633-8.

Abstract

The emergence of convolutional neural network (CNN) and transformer has recently facilitated significant advances in image super-resolution (SR) tasks. However, these networks commonly construct complex structures, having huge model parameters and high computational costs, to boost reconstruction performance. In addition, they do not consider the structural prior well, which is not conducive to high-quality image reconstruction. In this work, we devise a lightweight interactive feature inference network (IFIN), complementing the strengths of CNN and Transformer, for effective image SR reconstruction. Specifically, the interactive feature aggregation module (IFAM), implemented by structure-aware attention block (SAAB), Swin Transformer block (SWTB), and enhanced spatial adaptive block (ESAB), serves as the network backbone, progressively extracts more dedicated features to facilitate the reconstruction of high-frequency details in the image. SAAB adaptively recalibrates local salient structural information, and SWTB effectively captures rich global information. Further, ESAB synergetically complements local and global priors to ensure the consistent fusion of diverse features, achieving high-quality reconstruction of images. Comprehensive experiments reveal that our proposed networks attain state-of-the-art reconstruction accuracy on benchmark datasets while maintaining low computational demands. Our code and results are available at: https://github.com/wwaannggllii/IFIN .

摘要

卷积神经网络(CNN)和Transformer的出现,最近推动了图像超分辨率(SR)任务的重大进展。然而,这些网络通常构建复杂的结构,具有巨大的模型参数和高计算成本,以提高重建性能。此外,它们没有很好地考虑结构先验,这不利于高质量的图像重建。在这项工作中,我们设计了一种轻量级的交互式特征推理网络(IFIN),它结合了CNN和Transformer的优势,用于有效的图像SR重建。具体来说,由结构感知注意力块(SAAB)、Swin Transformer块(SWTB)和增强空间自适应块(ESAB)实现的交互式特征聚合模块(IFAM)作为网络主干,逐步提取更具针对性的特征,以促进图像中高频细节的重建。SAAB自适应地重新校准局部显著结构信息,SWTB有效地捕捉丰富的全局信息。此外,ESAB协同补充局部和全局先验,以确保不同特征的一致融合,实现图像的高质量重建。综合实验表明,我们提出的网络在基准数据集上达到了当前最优的重建精度,同时保持了较低的计算需求。我们的代码和结果可在以下网址获取:https://github.com/wwaannggllii/IFIN

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a04/11636848/bc33bd609201/41598_2024_62633_Fig1_HTML.jpg

相似文献

1
Lightweight interactive feature inference network for single-image super-resolution.
Sci Rep. 2024 May 21;14(1):11601. doi: 10.1038/s41598-024-62633-8.
2
CTCNet: A CNN-Transformer Cooperation Network for Face Image Super-Resolution.
IEEE Trans Image Process. 2023;32:1978-1991. doi: 10.1109/TIP.2023.3261747.
4
Context-aware lightweight remote-sensing image super-resolution network.
Front Neurorobot. 2023 Jun 23;17:1220166. doi: 10.3389/fnbot.2023.1220166. eCollection 2023.
5
A lightweight large receptive field network LrfSR for image super-resolution.
Sci Rep. 2025 Apr 11;15(1):12535. doi: 10.1038/s41598-025-96796-9.
6
Multi-level feature interaction image super-resolution network based on convolutional nonlinear spiking neural model.
Neural Netw. 2024 Sep;177:106366. doi: 10.1016/j.neunet.2024.106366. Epub 2024 May 6.
8
Parallel attention recursive generalization transformer for image super-resolution.
Sci Rep. 2025 Mar 13;15(1):8669. doi: 10.1038/s41598-025-92377-y.
9
EMOST: A dual-branch hybrid network for medical image fusion via efficient model module and sparse transformer.
Comput Biol Med. 2024 Sep;179:108771. doi: 10.1016/j.compbiomed.2024.108771. Epub 2024 Jul 5.
10
Reparameterizable Multibranch Bottleneck Network for Lightweight Image Super-Resolution.
Sensors (Basel). 2023 Apr 13;23(8):3963. doi: 10.3390/s23083963.

引用本文的文献

本文引用的文献

1
Transformer-Based Multiple-Object Tracking via Anchor-Based-Query and Template Matching.
Sensors (Basel). 2023 Dec 30;24(1):229. doi: 10.3390/s24010229.
2
HIPA: Hierarchical Patch Transformer for Single Image Super Resolution.
IEEE Trans Image Process. 2023;32:3226-3237. doi: 10.1109/TIP.2023.3279977. Epub 2023 Jun 6.
4
MADNet: A Fast and Lightweight Network for Single-Image Super Resolution.
IEEE Trans Cybern. 2021 Mar;51(3):1443-1453. doi: 10.1109/TCYB.2020.2970104. Epub 2021 Feb 17.
5
Image Super-Resolution Using Deep Convolutional Networks.
IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307. doi: 10.1109/TPAMI.2015.2439281.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验