Suppr超能文献

基于修饰 mRNA 的基因编辑揭示了人类诱导多能干细胞衍生的心肌细胞中基于肌节的基因表达调控。

Modified mRNA-based gene editing reveals sarcomere-based regulation of gene expression in human induced-pluripotent stem cell-derived cardiomyocytes.

机构信息

Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.

School of Basic Medical Sciences, Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China.

出版信息

Int Immunopharmacol. 2024 Dec 25;143(Pt 2):113378. doi: 10.1016/j.intimp.2024.113378. Epub 2024 Oct 17.

Abstract

Mutations in genes coding sarcomere components are the major causes of human inherited cardiomyopathy. Genome editing is widely applied to genetic modification of human pluripotent stem cells (hPSCs) before hPSCs were differentiated into cardiomyocytes to model cardiomyopathy. Whether genetic mutations influence the early hPSC differentiation process or solely the terminally differentiated cardiomyocytes during cardiac pathogenesis remains challenging to distinguish. To solve this problem, here we harnessed chemically modified mRNA (modRNA) and synthetic single-guide RNA to develop an efficient genome editing approach in hPSC-derived cardiomyocytes (hPSC-CMs). We showed that modRNA-based CRISPR/Cas9 mutagenesis of TNNT2, the coding gene for cardiac troponin T, results in sarcomere disassembly and contractile dysfunction in hPSC-CMs. These structural and functional phenotypes were associated with profound downregulation of oxidative phosphorylation genes and upregulation of cardiac stress markers NPPA and NPPB. These data confirmed that sarcomeres regulate gene expression in hPSC-CMs and highlighted the RNA technology as a powerful tool to achieve stage-specific genome editing during hPSC differentiation.

摘要

编码肌节成分的基因突变是人类遗传性心肌病的主要原因。基因组编辑被广泛应用于人类多能干细胞(hPSC)分化为心肌细胞之前的基因修饰,以模拟心肌病。基因突变是否影响 hPSC 早期分化过程,还是仅在心脏发病机制的终末分化心肌细胞中影响,这一问题仍然难以区分。为了解决这个问题,我们利用化学修饰的 mRNA(modRNA)和合成的单指导 RNA 开发了一种在 hPSC 衍生的心肌细胞(hPSC-CMs)中进行高效基因组编辑的方法。我们表明,编码心肌肌钙蛋白 T 的 TNNT2 的 modRNA 为基础的 CRISPR/Cas9 诱变导致 hPSC-CMs 中的肌节解体和收缩功能障碍。这些结构和功能表型与氧化磷酸化基因的显著下调以及心脏应激标志物 NPPA 和 NPPB 的上调有关。这些数据证实了肌节在 hPSC-CMs 中调节基因表达,并强调了 RNA 技术作为在 hPSC 分化过程中实现特定阶段基因组编辑的强大工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验