School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China.
Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
Commun Biol. 2024 Oct 18;7(1):1351. doi: 10.1038/s42003-024-07037-0.
Spatial transcriptomics is an emerging technology that enables the profiling of gene expression in tissues while preserving spatial location information. This innovative approach is anticipated to provide a comprehensive understanding of the spatial distribution of different cells within tissues and facilitate in-depth analysis of tissue structure. To accurately recognize spatial domains from spatial transcriptomics, we have introduced a generalized deep learning method called GAAEST (Graph Attention-based Autoencoder for Spatial Transcriptomics). Our proposed approach effectively integrates both spatial location information and gene expression data from spatial transcriptomics. Specifically, it leverages spatial location details to construct a neighborhood graph and employs a graph attention network-based encoder to embed gene expression information into a spatially informed space. At the same time, to further optimize the learned potential embedding, self-supervised contrastive learning is introduced to capture spatial information at three levels: local, global and contextual feature of spots. Finally, the decoder reconstructs gene expressions, which are then clustered to identify spatial domains with similar expression patterns and spatial proximity. Based on our experiments conducted on multiple datasets, GAAEST consistently outperforms existing state-of-the-art methods. The proposed GAAEST demonstrates excellent capabilities in spatial domain recognition, positioning it as an ideal tool for advancing spatial transcriptomics research.
空间转录组学是一种新兴的技术,能够在保留空间位置信息的同时对组织中的基因表达进行分析。这种创新方法有望提供对组织内不同细胞的空间分布的全面了解,并促进对组织结构的深入分析。为了从空间转录组学中准确识别空间域,我们引入了一种名为 GAAEST(基于图注意力的空间转录组学自动编码器)的通用深度学习方法。我们提出的方法有效地整合了空间转录组学中的空间位置信息和基因表达数据。具体来说,它利用空间位置细节构建邻域图,并采用基于图注意力网络的编码器将基因表达信息嵌入到具有空间信息的空间中。同时,为了进一步优化学习到的潜在嵌入,引入了自监督对比学习来捕获三个层次的空间信息:斑点的局部、全局和上下文特征。最后,解码器重构基因表达,然后对其进行聚类,以识别具有相似表达模式和空间邻近性的空间域。基于我们在多个数据集上进行的实验,GAAEST 始终优于现有的最先进方法。所提出的 GAAEST 在空间域识别方面表现出卓越的能力,是推进空间转录组学研究的理想工具。