The NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, Irvine, CA, 92627, USA.
Department of Mathematics, University of California Irvine, Irvine, CA, 92627, USA.
Nat Commun. 2022 Jul 14;13(1):4076. doi: 10.1038/s41467-022-31739-w.
One major challenge in analyzing spatial transcriptomic datasets is to simultaneously incorporate the cell transcriptome similarity and their spatial locations. Here, we introduce SpaceFlow, which generates spatially-consistent low-dimensional embeddings by incorporating both expression similarity and spatial information using spatially regularized deep graph networks. Based on the embedding, we introduce a pseudo-Spatiotemporal Map that integrates the pseudotime concept with spatial locations of the cells to unravel spatiotemporal patterns of cells. By comparing with multiple existing methods on several spatial transcriptomic datasets at both spot and single-cell resolutions, SpaceFlow is shown to produce a robust domain segmentation and identify biologically meaningful spatiotemporal patterns. Applications of SpaceFlow reveal evolving lineage in heart developmental data and tumor-immune interactions in human breast cancer data. Our study provides a flexible deep learning framework to incorporate spatiotemporal information in analyzing spatial transcriptomic data.
分析空间转录组数据集的一个主要挑战是同时结合细胞转录组相似性及其空间位置。在这里,我们引入了 SpaceFlow,它使用空间正则化深度图网络同时结合表达相似性和空间信息生成空间一致的低维嵌入。基于嵌入,我们引入了一个伪时空图谱,将伪时间概念与细胞的空间位置相结合,以揭示细胞的时空模式。通过在点和单细胞分辨率上对多个空间转录组数据集与多个现有方法进行比较,SpaceFlow 被证明可以产生稳健的领域分割并识别有生物学意义的时空模式。SpaceFlow 的应用揭示了心脏发育数据中的进化谱系以及人类乳腺癌数据中的肿瘤免疫相互作用。我们的研究提供了一个灵活的深度学习框架,用于在分析空间转录组数据时结合时空信息。