Hao Shuang, Guthrie Brian, Kim Soo-Kyung, Balanda Sergej, Kubicek Jan, Murtaza Babar, Khan Naim A, Khakbaz Pouyan, Su Judith, Goddard William A
Wyant College of Optical Sciences and Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
Global Core Research and Development Group, Cargill, Inc. 14800 28th Avenue N, Plymouth, MN, 55447, USA.
Commun Chem. 2024 Oct 18;7(1):236. doi: 10.1038/s42004-024-01324-x.
Sucrose provides both sweetness and energy by binding to both Venus flytrap domains (VFD) of the heterodimeric sweet taste receptor (T1R2/T1R3). In contrast, non-caloric sweeteners such as sucralose and aspartame only bind to one specific domain (VFD2) of T1R2, resulting in high-intensity sweetness. In this study, we investigate the binding mechanism of various steviol glycosides, artificial sweeteners, and a negative allosteric modulator (lactisole) at four distinct binding sites: VFD2, VFD3, transmembrane domain 2 (TMD2), and TMD3 through binding experiments and computational docking studies. Our docking results reveal multiple binding sites for the tested ligands, including the radiolabeled ligands. Our experimental evidence demonstrates that the C20 carboxy terminus of the Gα protein can bind to the intracellular region of either TMD2 or TMD3, altering GPCR affinity to the high-affinity state for steviol glycosides. These findings provide a mechanistic understanding of the structure and function of this heterodimeric sweet taste receptor.
蔗糖通过与异二聚体甜味受体(T1R2/T1R3)的两个捕蝇草素结构域(VFD)结合来提供甜味和能量。相比之下,三氯蔗糖和阿斯巴甜等无热量甜味剂仅与T1R2的一个特定结构域(VFD2)结合,从而产生高强度甜味。在本研究中,我们通过结合实验和计算对接研究,研究了各种甜菊糖苷、人工甜味剂和一种负变构调节剂(乳糖唑)在四个不同结合位点:VFD2、VFD3、跨膜结构域2(TMD2)和TMD3的结合机制。我们的对接结果揭示了测试配体(包括放射性标记配体)的多个结合位点。我们的实验证据表明,Gα蛋白的C20羧基末端可以与TMD2或TMD3的细胞内区域结合,改变GPCR对甜菊糖苷高亲和力状态的亲和力。这些发现为这种异二聚体甜味受体的结构和功能提供了机制上的理解。