Suppr超能文献

用于设计新型抗胶质母细胞瘤FAK抑制剂的联合机器学习模型、对接分析、ADMET研究和分子动力学模拟

Combined machine learning models, docking analysis, ADMET studies and molecular dynamics simulations for the design of novel FAK inhibitors against glioblastoma.

作者信息

Zhao Yihuan, He Xiaoyu, Wan Qianwen

机构信息

Key Laboratory of Basic Pharmacology of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China.

Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China.

出版信息

BMC Chem. 2024 Oct 18;18(1):203. doi: 10.1186/s13065-024-01316-x.

Abstract

Gliomas, particularly glioblastoma (GBM), are highly aggressive brain tumors with poor prognosis and high recurrence rates. This underscores the urgent need for novel therapeutic approaches. One promising target is Focal adhesion kinase (FAK), a key regulator of tumor progression currently in clinical trials for glioma treatment. Drug development, however, is both challenging and costly, necessitating efficient strategies. Computer-Aided Drug Design (CADD), especially when combined with machine learning (ML), streamlines the processes of virtual screening and optimization, significantly enhancing the efficiency and accuracy of drug discovery. Our study integrates ML, docking analysis, ADMET (absorption, distribution, metabolism, elimination, and toxicity) studies to identify novel FAK inhibitors specific to GBM. Predictive models showed strong performance, with an R of 0.892, MAE of 0.331, and RMSE of 0.467 using protein-level IC data in combined CDK, CDK extended fingerprints, and substructure fingerprint counts derived from 1280 FAK inhibitors. Another model, based on IC data from 2608 compounds tested on U87-MG cells, achieved an R of 0.789, MAE of 0.395, and RMSE of 0.536. Using these models, we efficiently identified 275 potentially active compounds out of 5107 candidates. Subsequent ADMET analysis narrowed this down to 16 potential FAK inhibitors that meet the established drug-likeness criteria. Moreover, molecular dynamics (MD) simulations validated the stable binding interactions between the selected compounds and the FAK protein. This study highlights the effectiveness of combining ML, docking analysis, and ADMET studies to rapidly identify potential FAK inhibitors from large databases, providing valuable insights for the systematic design of FAK inhibitors.

摘要

胶质瘤,尤其是胶质母细胞瘤(GBM),是具有高度侵袭性的脑肿瘤,预后不良且复发率高。这凸显了对新型治疗方法的迫切需求。一个有前景的靶点是粘着斑激酶(FAK),它是肿瘤进展的关键调节因子,目前正处于胶质瘤治疗的临床试验阶段。然而,药物开发既具有挑战性又成本高昂,因此需要高效的策略。计算机辅助药物设计(CADD),特别是与机器学习(ML)相结合时,可简化虚拟筛选和优化过程,显著提高药物发现的效率和准确性。我们的研究整合了ML、对接分析、ADMET(吸收、分布、代谢、排泄和毒性)研究,以鉴定针对GBM的新型FAK抑制剂。预测模型表现出色,使用来自1280种FAK抑制剂的联合CDK、CDK扩展指纹和子结构指纹计数中的蛋白质水平IC数据,R为0.892,平均绝对误差(MAE)为0.331,均方根误差(RMSE)为0.467。另一个基于在U87-MG细胞上测试的2608种化合物的IC数据的模型,R为0.789,MAE为0.395,RMSE为0.536。使用这些模型,我们从5107个候选物中有效鉴定出275种潜在活性化合物。随后的ADMET分析将范围缩小至16种符合既定类药标准的潜在FAK抑制剂。此外,分子动力学(MD)模拟验证了所选化合物与FAK蛋白之间稳定的结合相互作用。这项研究突出了结合ML、对接分析和ADMET研究从大型数据库中快速鉴定潜在FAK抑制剂的有效性,为FAK抑制剂的系统设计提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ca/11490052/341749bbf793/13065_2024_1316_Sch1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验