Suppr超能文献

药物研发中的人工智能:最新进展与未来展望。

Artificial intelligence in drug discovery: recent advances and future perspectives.

作者信息

Jiménez-Luna José, Grisoni Francesca, Weskamp Nils, Schneider Gisbert

机构信息

Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.

Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an Der Riss, Germany.

出版信息

Expert Opin Drug Discov. 2021 Sep;16(9):949-959. doi: 10.1080/17460441.2021.1909567. Epub 2021 Apr 2.

Abstract

: Artificial intelligence (AI) has inspired computer-aided drug discovery. The widespread adoption of machine learning, in particular deep learning, in multiple scientific disciplines, and the advances in computing hardware and software, among other factors, continue to fuel this development. Much of the initial skepticism regarding applications of AI in pharmaceutical discovery has started to vanish, consequently benefitting medicinal chemistry.: The current status of AI in chemoinformatics is reviewed. The topics discussed herein include quantitative structure-activity/property relationship and structure-based modeling, de novo molecular design, and chemical synthesis prediction. Advantages and limitations of current deep learning applications are highlighted, together with a perspective on next-generation AI for drug discovery.: Deep learning-based approaches have only begun to address some fundamental problems in drug discovery. Certain methodological advances, such as message-passing models, spatial-symmetry-preserving networks, hybrid de novo design, and other innovative machine learning paradigms, will likely become commonplace and help address some of the most challenging questions. Open data sharing and model development will play a central role in the advancement of drug discovery with AI.

摘要

人工智能(AI)推动了计算机辅助药物发现。机器学习,尤其是深度学习,在多个科学学科中的广泛应用,以及计算硬件和软件等方面的进步,持续推动着这一发展。最初对AI在药物发现应用方面的诸多质疑已开始消散,从而使药物化学受益。

本文综述了AI在化学信息学中的现状。这里讨论的主题包括定量构效/构性关系和基于结构的建模、从头分子设计以及化学合成预测。文中突出了当前深度学习应用的优势和局限性,并对药物发现的下一代AI进行了展望。

基于深度学习的方法才刚刚开始解决药物发现中的一些基本问题。某些方法学进展,如消息传递模型、保持空间对称性的网络、混合从头设计以及其他创新的机器学习范式,可能会变得普遍,并有助于解决一些最具挑战性的问题。开放数据共享和模型开发将在利用AI推进药物发现中发挥核心作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验