Suppr超能文献

脑组织中废弃蛋白质的动力学:阿尔茨海默病风险因素的数值研究。

Dynamics of waste proteins in brain tissue: Numerical insights into Alzheimer's risk factors.

机构信息

Department of Mechanical Engineering, <a href="https://ror.org/017zqws13">University of Minnesota</a>, Minneapolis, Minnesota 55455, USA.

Department of Mechanical Engineering, <a href="https://ror.org/04rswrd78">Iowa State University</a>, Ames, Iowa 50011, USA.

出版信息

Phys Rev E. 2024 Sep;110(3-1):034401. doi: 10.1103/PhysRevE.110.034401.

Abstract

Over the past few decades, research has indicated that the buildup of waste proteins, like amyloid-β (Aβ), in the brain's interstitial spaces is linked to neurodegenerative diseases like Alzheimer's, but the details of how such proteins are removed from the brain are not well understood. We have developed a numerical model to investigate the aggregation and clearance mechanisms of Aβ in the interstitial spaces of the brain. The model describes the volume-averaged transport of Aβ in a segment of the brain interstitium modeled as a porous medium, oriented between the perivascular space (fluid-filled channel surrounding a blood vessel) of a penetrating arteriole and that of a venule. Our numerical approach solves N coupled advection-diffusion-aggregation equations that model the production, aggregation, fragmentation, and clearance of N species of Aβ. We simulate N=50 species to investigate the oligomer-size dependence of clearance and aggregation. We introduce a timescale plot that helps predict Aβ buildup for different neurological conditions. We show that a sudden increase in monomer concentration, as occurs in conditions like traumatic brain injury, leads to significant plaque formation, which can qualitatively be predicted using the timescale plot. Our results also indicate that impaired protein clearance (as occurs with aging) and fragmentation are both mechanisms that sustain large intermediate oligomer concentrations. Our results provide novel insight into several known risk factors for Alzheimer's disease and cognitive decline, and we introduce a unique framing of Aβ dynamics as a competition between different timescales associated with production rates, aggregation rates, and clearance conditions.

摘要

在过去的几十年里,研究表明,大脑间质中废物蛋白质(如淀粉样蛋白-β[Aβ])的堆积与阿尔茨海默病等神经退行性疾病有关,但人们对这些蛋白质如何从大脑中清除的细节还不是很了解。我们开发了一个数值模型来研究 Aβ 在大脑间质中的聚集和清除机制。该模型描述了在一个被建模为多孔介质的脑间质段中 Aβ 的体积平均传输,该介质位于穿透小动脉的血管周围空间(围绕血管的充满液体的通道)和小静脉之间。我们的数值方法解决了 N 个耦合的对流-扩散-聚集方程,这些方程可以模拟 N 种 Aβ 的产生、聚集、碎裂和清除。我们模拟了 N=50 种物种,以研究寡聚物大小对清除和聚集的影响。我们引入了一个时间尺度图,有助于预测不同神经条件下的 Aβ 积累。我们表明,单体浓度的突然增加(如创伤性脑损伤等情况下)会导致显著的斑块形成,这可以使用时间尺度图进行定性预测。我们的结果还表明,蛋白质清除能力受损(如衰老时发生的情况)和碎裂都是维持大中间寡聚物浓度的机制。我们的结果为阿尔茨海默病和认知能力下降的几个已知风险因素提供了新的见解,我们引入了一个独特的 Aβ 动力学框架,将其视为与产生速率、聚集速率和清除条件相关的不同时间尺度之间的竞争。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验