Kühn Reimer
Mathematics Department, <a href="https://ror.org/0220mzb33">King's College London</a>, Strand, London WC2R 2LS, United Kingdom.
Phys Rev E. 2024 Sep;110(3):L032301. doi: 10.1103/PhysRevE.110.L032301.
We provide an explicit solution of the problem of level-set percolation for multivariate Gaussians defined in terms of weighted graph Laplacians on complex networks. The solution requires an analysis of the heterogeneous microstructure of the percolation problem, i.e., a self-consistent determination of locally varying percolation probabilities. This is achieved using a cavity or message passing approach. It can be evaluated, both for single large instances of locally treelike graphs, and in the thermodynamic limit of random graphs of finite mean degree in the configuration model class.
我们给出了在复杂网络上根据加权图拉普拉斯算子定义的多元高斯分布的水平集渗流问题的显式解。该解需要对渗流问题的异质微观结构进行分析,即自洽地确定局部变化的渗流概率。这是通过腔方法或消息传递方法实现的。它既可以针对局部树状图的单个大实例进行评估,也可以在配置模型类中有限平均度随机图的热力学极限下进行评估。