Suppr超能文献

无序介质中最优路径以及有向或无向聚合物的强无序行为和弱无序行为之间转变的标度统一理论。

Unified theory for the scaling of the crossover between strong and weak disorder behaviors of optimal paths and directed or undirected polymers in disordered media.

作者信息

Villarrubia-Moreno Daniel, Córdoba-Torres Pedro

机构信息

Departamento de Matemáticas and Grupo Interdisciplinar de Sistemas Complejos (GISC), <a href="https://ror.org/03ths8210">Universidad Carlos III de Madrid</a>, Leganés 28911, Spain.

Departamento de Física Matemática y de Fluidos, <a href="https://ror.org/02msb5n36">Universidad Nacional de Educación a Distancia (UNED)</a>, Las Rozas 28232, Spain.

出版信息

Phys Rev E. 2024 Sep;110(3-1):034502. doi: 10.1103/PhysRevE.110.034502.

Abstract

In this paper, we are concerned with the crossover between strong disorder (SD) and weak disorder (WD) behaviors in three well-known problems that involve minimal paths: directed polymers (directed paths with fixed starting point and length), optimal paths (undirected paths with a fixed end-to-end or spanning distance), and undirected polymers (undirected paths with a fixed starting point and length). We present a unified theoretical framework from which we can easily deduce the scaling of the crossover point of each problem in an arbitrary dimension. Our theory is based on the fact that the SD limit behavior of these systems is closely related to the corresponding percolation problem. As a result, the properties of those minimal paths are completely controlled by the so-called red bonds of percolation theory. Our model is first addressed numerically and then approximated by a two-term approach. This approach provides us with an analytical expression that seems to be reasonably accurate. The results are in perfect agreement with our simulations and with most of the results reported in related works. Our research also leads us to propose this crossover point as a universal measure of the disorder strength in each case. Interestingly, that measure depends on both the statistical properties of the disorder and the topological properties of the network.

摘要

在本文中,我们关注三个涉及最短路径的著名问题中强无序(SD)和弱无序(WD)行为之间的交叉:有向聚合物(具有固定起点和长度的有向路径)、最优路径(具有固定端到端或跨越距离的无向路径)以及无向聚合物(具有固定起点和长度的无向路径)。我们提出了一个统一的理论框架,从中我们可以轻松推导出任意维度下每个问题的交叉点的标度。我们的理论基于这样一个事实,即这些系统的SD极限行为与相应的渗流问题密切相关。因此,那些最短路径的性质完全由渗流理论中所谓的红色键控制。我们首先对模型进行数值处理,然后用两项近似方法进行近似。这种方法为我们提供了一个似乎相当准确的解析表达式。结果与我们的模拟以及相关工作中报道的大多数结果完全一致。我们的研究还使我们提出将这个交叉点作为每种情况下无序强度的通用度量。有趣的是,该度量既取决于无序的统计性质,也取决于网络的拓扑性质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验