Liu Tuo, Ding Ruyi, Su Zhonghuang, Peng Zixuan, Hildebrandt Andrea
Institute of Psychology, Goethe-Universität Frankfurt am Main, Frankfurt, Germany.
Department of Psychology, Sun Yat-Sen University, Guangzhou, China.
Int J Psychol. 2025 Feb;60(1):e13259. doi: 10.1002/ijop.13259. Epub 2024 Oct 19.
Understanding the differential strength of effects in the presence of a third variable, known as a moderation effect, is a common research goal in many psychological and behavioural science fields. If structural equation modelling is applied to test effects of interest, the investigation of differential strength of effects will typically ask how parameters of a latent variable model are influenced by categorical or continuous moderators, such as age, socio-economic status, personality traits, etc. Traditional approaches to continuous moderators in SEMs predominantly address linear moderation effects, risking the oversight of nonlinear effects. Moreover, some approaches have methodological limitations, for example, the need to categorise moderators or to pre-specify parametric forms of moderation. This tutorial introduces local structural equation modelling (LSEM) in a non-technical way. LSEM is a nonparametric approach that allows the analysis of nonlinear moderation effects without the above-mentioned limitations. Using an empirical dataset, we demonstrate the implementation of LSEM through the R-sirt package, emphasising its versatility in both exploratory analysis of nonlinear moderation without prior knowledge and confirmatory testing of hypothesised moderation functions. The tutorial also addresses common modelling issues and extends the discussion to different application scenarios, demonstrating its flexibility.
理解在存在第三个变量(即调节效应)的情况下效应的差异强度,是许多心理学和行为科学领域常见的研究目标。如果应用结构方程模型来检验感兴趣的效应,那么对效应差异强度的研究通常会询问潜在变量模型的参数如何受到分类或连续调节变量(如年龄、社会经济地位、人格特质等)的影响。结构方程模型中处理连续调节变量的传统方法主要关注线性调节效应,存在忽略非线性效应的风险。此外,一些方法存在方法学上的局限性,例如,需要对调节变量进行分类或预先指定调节的参数形式。本教程以非技术性的方式介绍局部结构方程建模(LSEM)。LSEM是一种非参数方法,能够分析非线性调节效应而不存在上述局限性。我们使用一个实证数据集,通过R-sirt包展示LSEM的实现过程,强调其在无需先验知识的非线性调节探索性分析以及假设调节函数的验证性检验中的通用性。本教程还讨论了常见的建模问题,并将讨论扩展到不同的应用场景,展示了其灵活性。