Suppr超能文献

缺失数据插补中偏差的因果观点:不良辅助变量对测试分数归一化的影响。

A Causal View on Bias in Missing Data Imputation: The Impact of Evil Auxiliary Variables on Norming of Test Scores.

作者信息

Sengewald Erik, Hardt Katinka, Sengewald Marie-Ann

机构信息

Occupational Psychological Service, German Federal Employment Agency, Nuremberg, Germany.

Research Data Center/Methods Development, Leibniz Institute for Educational Trajectories, Bamberg, Germany.

出版信息

Multivariate Behav Res. 2025 Mar-Apr;60(2):258-274. doi: 10.1080/00273171.2024.2412682. Epub 2024 Oct 20.

Abstract

Among the most important merits of modern missing data techniques such as multiple imputation (MI) and full-information maximum likelihood estimation is the possibility to include additional information about the missingness process via auxiliary variables. During the past decade, the choice of auxiliary variables has been investigated under a variety of different conditions and more recent research points to the potentially biasing effect of certain auxiliary variables, particularly colliders (Thoemmes & Rose, 2014). In this article, we further extend biasing mechanisms of certain auxiliary variables considered in previous research and thereby focus on their effects on individual diagnosis based on norming, in which the whole distribution of a variable is of interest rather than average coefficients (e.g., means). For this, we first provide the theoretical underpinnings of the mechanisms under study and then provide two focused simulations that (i) directly expand on the collider scenario in Thoemmes and Rose (2014, appendix A) by considering outcomes that are relevant to norming and (ii) extend the scenarios under consideration by instrumental variable mechanisms. We illustrate the bias mechanisms for two different norming approaches and exemplify the procedures by means of an empirical example. We end by discussing limitations and implications of our research.

摘要

现代缺失数据技术(如多重填补法(MI)和全信息极大似然估计)最重要的优点之一是可以通过辅助变量纳入有关缺失过程的额外信息。在过去十年中,已经在各种不同条件下研究了辅助变量的选择,并且最近的研究指出某些辅助变量,特别是对撞变量,可能存在偏差效应(托埃姆斯和罗斯,2014年)。在本文中,我们进一步扩展了先前研究中考虑的某些辅助变量的偏差机制,从而关注它们对基于常模化的个体诊断的影响,其中变量的整个分布是关注对象,而不是平均系数(例如均值)。为此,我们首先提供所研究机制的理论基础,然后提供两个重点模拟,(i)通过考虑与常模化相关的结果直接扩展托埃姆斯和罗斯(2014年,附录A)中的对撞变量情景,以及(ii)通过工具变量机制扩展所考虑的情景。我们说明了两种不同常模化方法的偏差机制,并通过一个实证例子举例说明这些程序。最后,我们讨论了研究的局限性和意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验