Zhong Zhilin, Hu Xueli, Zhang Renjie, Liu Xu, Chen Wenqi, Zhang Shubin, Sun Jianjian, Zhong Tao P
Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, Guangdong 510100, China.
J Genet Genomics. 2025 Jan;52(1):105-115. doi: 10.1016/j.jgg.2024.10.006. Epub 2024 Oct 18.
Single-base editors, including cytosine base editors (CBEs) and adenine base editors (ABEs), facilitate accurate C⋅G to T⋅A and A⋅T to G⋅C, respectively, holding promise for the precise modeling and treatment of human hereditary disorders. Efficient base editing and expanded base conversion range have been achieved in human cells through base editors fusing with Rad51 DNA binding domain (Rad51DBD), such as hyA3A-BE4max. Here, we show that hyA3A-BE4max catalyzes C-to-T substitution in the zebrafish genome and extends editing positions (C-C) proximal to the protospacer adjacent motif. We develop a codon-optimized counterpart zhyA3A-CBE5, which exhibits substantially high C-to-T conversion with 1.59- to 3.50-fold improvement compared with the original hyA3A-BE4max. With these tools, disease-relevant hereditary mutations can be more efficaciously generated in zebrafish. We introduce human genetic mutation rpl11 and abcc6a by zhyA3A-CBE5 in zebrafish, mirroring Diamond-Blackfan anemia and Pseudoxanthoma Elasticum, respectively. Our study expands the base editing platform targeting the zebrafish genomic landscape and the application of single-base editors for disease modeling and gene function study.
单碱基编辑器,包括胞嘧啶碱基编辑器(CBE)和腺嘌呤碱基编辑器(ABE),分别促进精确的C⋅G到T⋅A和A⋅T到G⋅C转换,为人类遗传性疾病的精确建模和治疗带来了希望。通过将碱基编辑器与Rad51 DNA结合结构域(Rad51DBD)融合,如hyA3A-BE4max,已在人类细胞中实现了高效的碱基编辑和扩大的碱基转换范围。在此,我们表明hyA3A-BE4max在斑马鱼基因组中催化C到T的替换,并扩展了与原间隔相邻基序近端的编辑位置(C-C)。我们开发了一种密码子优化的对应物zhyA3A-CBE5,与原始的hyA3A-BE4max相比,其C到T的转换率显著提高,提高了1.59至3.50倍。利用这些工具,可以在斑马鱼中更有效地产生与疾病相关的遗传突变。我们通过zhyA3A-CBE5在斑马鱼中引入人类基因突变rpl11和abcc6a,分别模拟钻石黑范贫血和弹性假黄瘤。我们的研究扩展了针对斑马鱼基因组景观的碱基编辑平台以及单碱基编辑器在疾病建模和基因功能研究中的应用。