Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France.
Museúm National d'Histoire Naturelle, INSERM U1154, CNRS UMR 7196, Paris, France.
Nat Protoc. 2023 Sep;18(9):2794-2813. doi: 10.1038/s41596-023-00854-3. Epub 2023 Jul 26.
Base editing is a powerful CRISPR-based technology for introducing precise substitutions into the genome. This technology greatly advances mutagenesis possibilities in vivo, particularly in zebrafish, for which the generation of precise point mutations is still challenging. Zebrafish have emerged as an important model for genetic studies and in vivo disease modeling. With the development of different base editor variants that recognize protospacer-adjacent motifs (PAMs) other than the classical 5'-NGG-3' PAM, it is now possible to design and test several guide RNAs to find the most efficient way to precisely introduce the desired substitution. Here, we describe the experimental design strategies and protocols for cytosine base editing in zebrafish, from guide RNA design and selection of base editor variants to generation of the zebrafish mutant line carrying the substitution of interest. By using co-selection by introducing a loss-of-function mutation in genes necessary for the formation of pigments, injected embryos with highly efficient base editing can be directly analyzed to determine the phenotypic impact of the targeted substitution. The generation of mutant embryos after base editor injections in zebrafish can be completed within 2 weeks.
碱基编辑是一种强大的基于 CRISPR 的技术,可将精确的替换引入基因组中。该技术极大地提高了体内诱变的可能性,特别是在斑马鱼中,因为在斑马鱼中精确点突变的产生仍然具有挑战性。斑马鱼已成为遗传研究和体内疾病建模的重要模型。随着识别不同于经典 5'-NGG-3' PAM 的不同碱基编辑器变体的出现,现在可以设计和测试几种向导 RNA,以找到最有效的方法来精确引入所需的替换。在这里,我们描述了在斑马鱼中进行胞嘧啶碱基编辑的实验设计策略和方案,包括向导 RNA 的设计和碱基编辑器变体的选择,以及携带感兴趣的替换的斑马鱼突变系的产生。通过在引入对形成色素所必需的基因的功能丧失突变的情况下进行共选择,可以直接分析注射了高效碱基编辑器的胚胎,以确定靶向替换的表型影响。在斑马鱼中进行碱基编辑器注射后的突变胚胎的产生可以在 2 周内完成。