Suppr超能文献

原发性肾高分化神经内分泌肿瘤的发病机制、诊断与治疗:文献综述

Pathogenesis, diagnosis and treatment of primary renal well-differentiated neuroendocrine tumors: a review of the literature.

作者信息

Zhang Zhongqi, Luo Chenming, Yuan Tengfei, Ge Pinxu, Li Faping, Fan Yanpeng, Hou Yuchuan

机构信息

Department of Urology, First Hospital of Jilin University, Changchun, China.

出版信息

Front Oncol. 2024 Oct 4;14:1298559. doi: 10.3389/fonc.2024.1298559. eCollection 2024.

Abstract

Neuroendocrine tumors (NETs) are a rare type of neoplasm that originate from neuroendocrine cells and peptide neurons. Primary renal well-differentiated NETs are extremely rare, and only a few cases have been reported worldwide. In this study, we present a new case of primary renal well-differentiated NET at our institution, followed by a literature review. A systematic search was conducted using various search terms to identify relevant literature on primary renal well-differentiated NETs from 2021 to present. The study analyzed the clinical features, age, gender, tumor size, location, gross pathology, light microscopy, and immunohistochemical results of 32 cases of primary renal well-differentiated NETs. The findings suggest that these tumors are rare and have nonspecific clinical and imaging features. The diagnosis heavily relies on immunohistochemical analysis. Primary renal well-differentiated NETs are associated with low malignant potential and a favorable prognosis. Surgical resection is the preferred treatment, and long-term follow-up is necessary to monitor the patient's condition.

摘要

神经内分泌肿瘤(NETs)是一种罕见的肿瘤类型,起源于神经内分泌细胞和肽能神经元。原发性肾高分化NETs极为罕见,全球仅报道了少数病例。在本研究中,我们报告了我院一例原发性肾高分化NETs的新病例,并进行了文献综述。使用各种检索词进行系统检索,以识别2021年至今有关原发性肾高分化NETs的相关文献。该研究分析了32例原发性肾高分化NETs的临床特征、年龄、性别、肿瘤大小、位置、大体病理、光学显微镜检查和免疫组化结果。研究结果表明,这些肿瘤罕见,具有非特异性的临床和影像学特征。诊断主要依赖免疫组化分析。原发性肾高分化NETs具有低恶性潜能和良好的预后。手术切除是首选治疗方法,需要长期随访以监测患者病情。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/527b/11486623/6560dfaedcf1/fonc-14-1298559-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验