Appiah Eugene Sefa, Mensah-Darkwa Kwadwo, Andrews Anthony, Agyemang Frank Ofori, Nartey Martinson Addo, Makgopa Katlego, Hou Yongdan, Aggrey Patrick, Quansah David Ato
Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology Kumasi Ghana
Department of Sustainable Mineral Resource Development, University of Energy and Natural Resources Sunyani Ghana
Nanoscale Adv. 2024 Sep 25;6(24):6265-77. doi: 10.1039/d4na00680a.
Carbon black, a nano-porous material usually derived from the pyrolysis of waste tyres possesses varied particle sizes and morphology making it a viable material for several engineering applications. However, the high tendency for CB to agglomerate remains a challenge. To address this, bio-templating has been employed to produce a nanostructured porous carbon electrode material for supercapacitor applications using diatomite as a template. Diatomite-synthesized activated carbon (DSAC) was fabricated through a three-step process involving acid treatment of diatomite, thermal activation of carbon black, and bio-template synthesis. The resulting material was thoroughly characterized using XRD, Raman spectroscopy, BET analysis, and SEM imaging. Its electrochemical properties were assessed through cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The DSAC material exhibited a high specific surface area of 266.867 m g, pore volume of 0.6606 cm g, and mean pore radius of 1.8943 nm. The electrochemical evaluation revealed that DSAC demonstrates excellent electrochemical performance, achieving a high specific capacitance of 630.18 F g and retaining 94.29% capacitance after 5000 cycles at 1 A g. The DSAC electrode is eco-friendly and a promising candidate for supercapacitor applications.
炭黑是一种通常由废旧轮胎热解得到的纳米多孔材料,具有多种粒径和形态,使其成为多种工程应用的可行材料。然而,炭黑的高团聚倾向仍然是一个挑战。为了解决这个问题,采用生物模板法,以硅藻土为模板制备了用于超级电容器应用的纳米结构多孔碳电极材料。通过包括硅藻土酸处理、炭黑热活化和生物模板合成的三步工艺制备了硅藻土合成活性炭(DSAC)。使用X射线衍射、拉曼光谱、BET分析和扫描电子显微镜成像对所得材料进行了全面表征。通过循环伏安法、恒电流充放电和电化学阻抗谱评估了其电化学性能。DSAC材料表现出266.867 m²/g的高比表面积、0.6606 cm³/g的孔体积和1.8943 nm的平均孔径。电化学评估表明,DSAC表现出优异的电化学性能,在1 A/g下实现了630.18 F/g的高比电容,并在5000次循环后保持94.29%的电容。DSAC电极对环境友好,是超级电容器应用的有前途的候选材料。