Suppr超能文献

通过协同调控策略在硅藻土上对硫化镍铁和碳纳米管进行多维合理设计用于超级电容器

A multidimensional rational design of nickel-iron sulfide and carbon nanotubes on diatomite via synergistic modulation strategy for supercapacitors.

作者信息

Li Kailin, Hu Zhufeng, Zhao Renjun, Zhou Jinfei, Jing Chuan, Sun Qing, Rao Jinsong, Yao Kexin, Dong Biqin, Liu Xiaoying, Li Haiyan, Zhang Yuxin, Ji Junyi

机构信息

State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.

School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.

出版信息

J Colloid Interface Sci. 2021 Dec;603:799-809. doi: 10.1016/j.jcis.2021.06.131. Epub 2021 Jun 27.

Abstract

Based on their characteristics, transition metal layered double hydroxides have been of great scientific interest for their use in supercapacitors. Up until now, severe aggregation and low intrinsic conductivity have been the major hurdles for their application. In this work, nickel-iron sulfide nanosheets (NiFeSx) and carbon nanotubes (CNTs) were synthesized on diatomite using chemical vapor deposition and a two-step hydrothermal method to overcome these challenges. Synthesis of this composite successfully exploits the synergistic effect of multicomponent materials to improve the electrochemical performance. Diatomite is selected as a substrate to provide preferable surroundings for the uniform dispersion of nanomaterial on its surface, which enlarges the active sites that come in contact with the electrolytes, significantly improving the electrochemical properties. Combined with high conductivity and a synchronous sulfurization effect, the NiFeSx@CNTs@MnS@Diatomite electrode delivered a high specific capacitance of 552F g at a current density of 1 A g, a good rate capability of 68.4% retention at 10 A g, and superior cycling stability of 89.8% capacitance retention after 5000 cycles at 5 A g. Furthermore, an asymmetric supercapacitor assembled via NiFeSx@CNTs@MnS@Diatomite and graphene delivered a maximum energy density of 28.9 Wh kg and a maximum power density of 9375 W kg at a potential of 1.5 V. This research lays the groundwork for ideal material preparation as well as a rational design for the electrode material, including property enhancement of diatomite-based material for use in supercapacitors.

摘要

基于其特性,过渡金属层状双氢氧化物因其在超级电容器中的应用而备受科学关注。到目前为止,严重的团聚和低本征电导率一直是其应用的主要障碍。在这项工作中,采用化学气相沉积法和两步水热法在硅藻土上合成了硫化镍铁纳米片(NiFeSx)和碳纳米管(CNTs),以克服这些挑战。这种复合材料的合成成功地利用了多组分材料的协同效应来提高电化学性能。选择硅藻土作为基底,为纳米材料在其表面的均匀分散提供了良好的环境,扩大了与电解质接触的活性位点,显著改善了电化学性能。结合高电导率和同步硫化效应,NiFeSx@CNTs@MnS@硅藻土电极在1 A g的电流密度下具有552F g的高比电容,在10 A g时具有68.4%的良好倍率性能保持率,在5 A g下5000次循环后具有89.8%的优异循环稳定性。此外,通过NiFeSx@CNTs@MnS@硅藻土和石墨烯组装的不对称超级电容器在1.5 V的电位下具有28.9 Wh kg的最大能量密度和9375 W kg的最大功率密度。这项研究为理想材料的制备以及电极材料的合理设计奠定了基础,包括增强用于超级电容器的硅藻土基材料的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验