Afzal Muhammad, Hussain Jamil, Abbas Asim, Hussain Maqbool, Attique Muhammad, Lee Sungyoung
College of Computing, Birmingham City University, Birmingham, UK.
Department of AI and Data Science, Sejong University, Seoul, Korea.
Digit Health. 2024 Oct 17;10:20552076241287357. doi: 10.1177/20552076241287357. eCollection 2024 Jan-Dec.
Data-driven methodologies in healthcare necessitate labeled data for effective decision-making. However, medical data, particularly in unstructured formats, such as clinical notes, often lack explicit labels, making manual annotation challenging and tedious.
This paper introduces a novel deep active learning framework designed to facilitate the annotation process for multiclass text classification, specifically using the SOAP (subjective, objective, assessment, plan) framework, a widely recognized medical protocol. Our methodology leverages transformer-based deep learning techniques to automatically annotate clinical notes, significantly easing the manual labor involved and enhancing classification performance. Transformer-based deep learning models, with their ability to capture complex patterns in large datasets, represent a cutting-edge approach for advancing natural language processing tasks.
We validate our approach through experiments on a diverse set of clinical notes from publicly available datasets, comprising over 426 documents. Our model demonstrates superior classification accuracy, with an F1 score improvement of 4.8% over existing methods but also provides a practical tool for healthcare professionals, potentially improving clinical documentation practices and patient care.
The research underscores the synergy between active learning and advanced deep learning, paving the way for future exploration of automatic text annotation and its implications for clinical informatics. Future studies will aim to integrate multimodal data and large language models to enhance the richness and accuracy of clinical text analysis, opening new pathways for comprehensive healthcare insights.
医疗保健中的数据驱动方法需要有标签的数据才能进行有效的决策。然而,医学数据,尤其是非结构化格式的数据,如临床记录,往往缺乏明确的标签,这使得手动标注具有挑战性且繁琐。
本文介绍了一种新颖的深度主动学习框架,旨在促进多类文本分类的标注过程,具体使用SOAP(主观、客观、评估、计划)框架,这是一种广泛认可的医疗协议。我们的方法利用基于Transformer的深度学习技术自动标注临床记录,显著减轻了所涉及的体力劳动并提高了分类性能。基于Transformer的深度学习模型能够在大型数据集中捕捉复杂模式,代表了推进自然语言处理任务的前沿方法。
我们通过对来自公开可用数据集的各种临床记录进行实验来验证我们的方法,这些数据集包含超过426份文档。我们的模型展示了卓越的分类准确率,F1分数比现有方法提高了4.8%,同时还为医疗保健专业人员提供了一个实用工具,有可能改善临床文档实践和患者护理。
该研究强调了主动学习与先进深度学习之间的协同作用,为未来自动文本标注及其对临床信息学的影响的探索铺平了道路。未来的研究旨在整合多模态数据和大语言模型,以提高临床文本分析的丰富性和准确性,为全面的医疗保健见解开辟新途径。