文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用混合深度学习模型从临床记录中识别哮喘控制因素。

Identification of asthma control factor in clinical notes using a hybrid deep learning model.

机构信息

Department of Artificial Intelligence and Informatics, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.

Precision Population Science Lab, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.

出版信息

BMC Med Inform Decis Mak. 2021 Nov 9;21(Suppl 7):272. doi: 10.1186/s12911-021-01633-4.


DOI:10.1186/s12911-021-01633-4
PMID:34753481
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8579684/
Abstract

BACKGROUND: There are significant variabilities in guideline-concordant documentation in asthma care. However, assessing clinician's documentation is not feasible using only structured data but requires labor-intensive chart review of electronic health records (EHRs). A certain guideline element in asthma control factors, such as review inhaler techniques, requires context understanding to correctly capture from EHR free text. METHODS: The study data consist of two sets: (1) manual chart reviewed data-1039 clinical notes of 300 patients with asthma diagnosis, and (2) weakly labeled data (distant supervision)-27,363 clinical notes from 800 patients with asthma diagnosis. A context-aware language model, Bidirectional Encoder Representations from Transformers (BERT) was developed to identify inhaler techniques in EHR free text. Both original BERT and clinical BioBERT (cBERT) were applied with a cost-sensitivity to deal with imbalanced data. The distant supervision using weak labels by rules was also incorporated to augment the training set and alleviate a costly manual labeling process in the development of a deep learning algorithm. A hybrid approach using post-hoc rules was also explored to fix BERT model errors. The performance of BERT with/without distant supervision, hybrid, and rule-based models were compared in precision, recall, F-score, and accuracy. RESULTS: The BERT models on the original data performed similar to a rule-based model in F1-score (0.837, 0.845, and 0.838 for rules, BERT, and cBERT, respectively). The BERT models with distant supervision produced higher performance (0.853 and 0.880 for BERT and cBERT, respectively) than without distant supervision and a rule-based model. The hybrid models performed best in F1-score of 0.877 and 0.904 over the distant supervision on BERT and cBERT. CONCLUSIONS: The proposed BERT models with distant supervision demonstrated its capability to identify inhaler techniques in EHR free text, and outperformed both the rule-based model and BERT models trained on the original data. With a distant supervision approach, we may alleviate costly manual chart review to generate the large training data required in most deep learning-based models. A hybrid model was able to fix BERT model errors and further improve the performance.

摘要

背景:在哮喘护理中,指南一致的文件记录存在显著差异。然而,仅使用结构化数据评估临床医生的文件记录是不可行的,需要对电子健康记录(EHR)进行繁琐的图表审查。哮喘控制因素中的某些指南要素,例如审查吸入器技术,需要上下文理解才能从 EHR 自由文本中正确捕获。

方法:研究数据包括两组:(1)手动图表审查数据-300 名哮喘诊断患者的 1039 份临床记录,(2)弱标记数据(远程监督)-800 名哮喘诊断患者的 27363 份临床记录。开发了一种基于上下文感知的语言模型,即双向编码器表示转换器(BERT),用于从 EHR 自由文本中识别吸入器技术。原始 BERT 和临床生物 BERT(cBERT)都应用了成本敏感性来处理不平衡数据。还采用基于规则的弱标签远程监督来扩充训练集,并减轻深度学习算法开发中的昂贵手动标记过程。还探索了一种使用事后规则的混合方法来修复 BERT 模型错误。比较了带有/不带有远程监督、混合和基于规则的模型的 BERT 在精度、召回率、F 分数和准确性方面的性能。

结果:原始数据上的 BERT 模型在 F1 分数方面的表现与基于规则的模型相似(规则、BERT 和 cBERT 的 F1 分数分别为 0.837、0.845 和 0.838)。带有远程监督的 BERT 模型产生了更高的性能(BERT 和 cBERT 的 F1 分数分别为 0.853 和 0.880),优于无远程监督和基于规则的模型。混合模型在 F1 分数方面表现最佳,分别为 0.877 和 0.904,优于 BERT 和 cBERT 上的远程监督。

结论:提出的带有远程监督的 BERT 模型证明了其在 EHR 自由文本中识别吸入器技术的能力,并优于基于规则的模型和在原始数据上训练的 BERT 模型。通过远程监督方法,我们可以减轻昂贵的手动图表审查,生成大多数基于深度学习的模型所需的大量训练数据。混合模型能够修复 BERT 模型错误,并进一步提高性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5048/8579684/9148c48d6175/12911_2021_1633_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5048/8579684/9148c48d6175/12911_2021_1633_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5048/8579684/9148c48d6175/12911_2021_1633_Fig1_HTML.jpg

相似文献

[1]
Identification of asthma control factor in clinical notes using a hybrid deep learning model.

BMC Med Inform Decis Mak. 2021-11-9

[2]
Deep Learning Identification of Asthma Inhaler Techniques in Clinical Notes.

Proceedings (IEEE Int Conf Bioinformatics Biomed). 2020

[3]
Classifying the lifestyle status for Alzheimer's disease from clinical notes using deep learning with weak supervision.

BMC Med Inform Decis Mak. 2022-7-7

[4]
Classifying social determinants of health from unstructured electronic health records using deep learning-based natural language processing.

J Biomed Inform. 2022-3

[5]
A hybrid model to identify fall occurrence from electronic health records.

Int J Med Inform. 2022-3-7

[6]
Automated Recognition of Visual Acuity Measurements in Ophthalmology Clinical Notes Using Deep Learning.

Ophthalmol Sci. 2023-7-19

[7]
A Natural Language Processing Model for COVID-19 Detection Based on Dutch General Practice Electronic Health Records by Using Bidirectional Encoder Representations From Transformers: Development and Validation Study.

J Med Internet Res. 2023-10-4

[8]
Leveraging weak supervision to perform named entity recognition in electronic health records progress notes to identify the ophthalmology exam.

Int J Med Inform. 2022-11

[9]
Extracting comprehensive clinical information for breast cancer using deep learning methods.

Int J Med Inform. 2019-10-2

[10]
Predicting Glaucoma Progression Requiring Surgery Using Clinical Free-Text Notes and Transfer Learning With Transformers.

Transl Vis Sci Technol. 2022-3-2

引用本文的文献

[1]
Identifying Asthma-Related Symptoms From Electronic Health Records Using a Hybrid Natural Language Processing Approach Within a Large Integrated Health Care System: Retrospective Study.

JMIR AI. 2025-5-2

[2]
Leveraging large language models for knowledge-free weak supervision in clinical natural language processing.

Sci Rep. 2025-3-10

[3]
Engineering of Generative Artificial Intelligence and Natural Language Processing Models to Accurately Identify Arrhythmia Recurrence.

Circ Arrhythm Electrophysiol. 2025-1

[4]
Lightweight transformers for clinical natural language processing.

Nat Lang Eng. 2024-9

[5]
Health Care Language Models and Their Fine-Tuning for Information Extraction: Scoping Review.

JMIR Med Inform. 2024-10-21

[6]
Leveraging Large Language Models for Knowledge-free Weak Supervision in Clinical Natural Language Processing.

Res Sq. 2024-6-28

[7]
Automated labelling of radiology reports using natural language processing: Comparison of traditional and newer methods.

Health Care Sci. 2023-4-24

[8]
A Sustainable Approach to Asthma Diagnosis: Classification with Data Augmentation, Feature Selection, and Boosting Algorithm.

Diagnostics (Basel). 2024-3-29

[9]
Use of ChatGPT in Urology and its Relevance in Clinical Practice: Is it useful?

Int Braz J Urol. 2024

[10]
The use of artificial intelligence for delivery of essential health services across WHO regions: a scoping review.

Front Public Health. 2023

本文引用的文献

[1]
BertMCN: Mapping colloquial phrases to standard medical concepts using BERT and highway network.

Artif Intell Med. 2021-2

[2]
Relation Extraction from Clinical Narratives Using Pre-trained Language Models.

AMIA Annu Symp Proc. 2020-3-4

[3]
Artificial intelligence approaches using natural language processing to advance EHR-based clinical research.

J Allergy Clin Immunol. 2019-12-26

[4]
A general approach for improving deep learning-based medical relation extraction using a pre-trained model and fine-tuning.

Database (Oxford). 2019-1-1

[5]
BioBERT: a pre-trained biomedical language representation model for biomedical text mining.

Bioinformatics. 2020-2-15

[6]
Using distant supervision to augment manually annotated data for relation extraction.

PLoS One. 2019-7-30

[7]
Enhancing clinical concept extraction with contextual embeddings.

J Am Med Inform Assoc. 2019-11-1

[8]
A clinical text classification paradigm using weak supervision and deep representation.

BMC Med Inform Decis Mak. 2019-1-7

[9]
Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis.

IEEE J Biomed Health Inform. 2017-10-27

[10]
Automated chart review utilizing natural language processing algorithm for asthma predictive index.

BMC Pulm Med. 2018-2-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索