Suppr超能文献

CALIFRAME:一种提议的将报告指南与FAIR原则校准以促进医学人工智能研究可重复性的方法。

CALIFRAME: a proposed method of calibrating reporting guidelines with FAIR principles to foster reproducibility of AI research in medicine.

作者信息

Shiferaw Kirubel Biruk, Balaur Irina, Welter Danielle, Waltemath Dagmar, Zeleke Atinkut Alamirrew

机构信息

Department of Medical Informatics, Institute for Community Medicine, University Medicine Greifswald, Greifswald D-17475, Germany.

Luxembourg Centre for Systems Biology, University of Luxembourg, Belvaux L-4367, Luxembourg.

出版信息

JAMIA Open. 2024 Oct 18;7(4):ooae105. doi: 10.1093/jamiaopen/ooae105. eCollection 2024 Dec.

Abstract

BACKGROUND

Procedural and reporting guidelines are crucial in framing scientific practices and communications among researchers and the broader community. These guidelines aim to ensure transparency, reproducibility, and reliability in scientific research. Despite several methodological frameworks proposed by various initiatives to foster reproducibility, challenges such as data leakage and reproducibility remain prevalent. Recent studies have highlighted the transformative potential of incorporating the FAIR (Findable, Accessible, Interoperable, and Reusable) principles into workflows, particularly in contexts like software and machine learning model development, to promote open science.

OBJECTIVE

This study aims to introduce a comprehensive framework, designed to calibrate existing reporting guidelines against the FAIR principles. The goal is to enhance reproducibility and promote open science by integrating these principles into the scientific reporting process.

METHODS

We employed the "Best fit" framework synthesis approach which involves systematically reviewing and synthesizing existing frameworks and guidelines to identify best practices and gaps. We then proposed a series of defined workflows to align reporting guidelines with FAIR principles. A use case was developed to demonstrate the practical application of the framework.

RESULTS

The integration of FAIR principles with established reporting guidelines through the framework effectively bridges the gap between FAIR metrics and traditional reporting standards. The framework provides a structured approach to enhance the findability, accessibility, interoperability, and reusability of scientific data and outputs. The use case demonstrated the practical benefits of the framework, showing improved data management and reporting practices.

DISCUSSION

The framework addresses critical challenges in scientific research, such as data leakage and reproducibility issues. By embedding FAIR principles into reporting guidelines, the framework ensures that scientific outputs are more transparent, reliable, and reusable. This integration not only benefits researchers by improving data management practices but also enhances the overall scientific process by promoting open science and collaboration.

CONCLUSION

The proposed framework successfully combines FAIR principles with reporting guidelines, offering a robust solution to enhance reproducibility and open science. This framework can be applied across various contexts, including software and machine learning model development stages, to foster a more transparent and collaborative scientific environment.

摘要

背景

程序和报告指南对于规范科研实践以及研究人员与更广泛社区之间的交流至关重要。这些指南旨在确保科学研究的透明度、可重复性和可靠性。尽管各种倡议提出了若干促进可重复性的方法框架,但诸如数据泄露和可重复性等挑战仍然普遍存在。最近的研究强调了将FAIR(可查找、可访问、可互操作和可重用)原则纳入工作流程的变革潜力,特别是在软件和机器学习模型开发等背景下,以促进开放科学。

目的

本研究旨在引入一个综合框架,该框架旨在对照FAIR原则校准现有的报告指南。目标是通过将这些原则整合到科学报告过程中来提高可重复性并促进开放科学。

方法

我们采用了“最佳拟合”框架综合方法,该方法包括系统地审查和综合现有框架及指南,以确定最佳实践和差距。然后,我们提出了一系列明确的工作流程,以使报告指南与FAIR原则保持一致。开发了一个用例来展示该框架的实际应用。

结果

通过该框架将FAIR原则与既定的报告指南相结合,有效地弥合了FAIR指标与传统报告标准之间的差距。该框架提供了一种结构化方法,以提高科学数据和产出的可查找性、可访问性、可互操作性和可重用性。用例展示了该框架的实际益处,显示出改进的数据管理和报告实践。

讨论

该框架解决了科学研究中的关键挑战,如数据泄露和可重复性问题。通过将FAIR原则嵌入报告指南中,该框架确保科学产出更加透明、可靠且可重用。这种整合不仅通过改善数据管理实践使研究人员受益,还通过促进开放科学和合作增强了整体科学过程。

结论

所提出的框架成功地将FAIR原则与报告指南相结合,为提高可重复性和开放科学提供了一个强大的解决方案。该框架可应用于各种背景,包括软件和机器学习模型开发阶段,以营造一个更加透明和协作的科学环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8edb/11488973/7eab158008ef/ooae105f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验