Suppr超能文献

根据 FAIR 原则的牙科研究数据的可用性和质量。

Dental Research Data Availability and Quality According to the FAIR Principles.

机构信息

Bioinformatics Lab, Riga Stradins University, Riga, Latvia.

Department of Conservative Dentistry and Oral Health, Riga Stradins University, Riga, Latvia.

出版信息

J Dent Res. 2022 Oct;101(11):1307-1313. doi: 10.1177/00220345221101321. Epub 2022 Jun 2.

Abstract

According to the FAIR principles, data produced by scientific research should be findable, accessible, interoperable, and reusable-for instance, to be used in machine learning algorithms. However, to date, there is no estimate of the quantity or quality of dental research data evaluated via the FAIR principles. We aimed to determine the availability of open data in dental research and to assess compliance with the FAIR principles (or FAIRness) of shared dental research data. We downloaded all available articles published in PubMed-indexed dental journals from 2016 to 2021 as open access from Europe PubMed Central. In addition, we took a random sample of 500 dental articles that were not open access through Europe PubMed Central. We assessed data sharing in the articles and compliance of shared data to the FAIR principles programmatically. Results showed that of 7,509 investigated articles, 112 (1.5%) shared data. The average (SD) level of compliance with the FAIR metrics was 32.6% (31.9%). The average for each metric was as follows: findability, 3.4 (2.7) of 7; accessibility, 1.0 (1.0) of 3; interoperability, 1.1 (1.2) of 4; and reusability, 2.4 (2.6) of 10. No considerable changes in data sharing or quality of shared data occurred over the years. Our findings indicated that dental researchers rarely shared data, and when they did share, the FAIR quality was suboptimal. Machine learning algorithms could understand 1% of available dental research data. These undermine the reproducibility of dental research and hinder gaining the knowledge that can be gleaned from machine learning algorithms and applications.

摘要

根据 FAIR 原则,科学研究产生的数据应该是可查找、可访问、可互操作和可重复使用的——例如,可用于机器学习算法。然而,迄今为止,尚无关于通过 FAIR 原则评估的牙科研究数据的数量或质量的估计。我们旨在确定牙科研究中开放数据的可用性,并评估共享牙科研究数据是否符合 FAIR 原则(或 FAIRness)。我们从欧洲 PubMed Central 下载了 2016 年至 2021 年期间以开放获取形式发表在 PubMed 索引牙科期刊上的所有可用文章。此外,我们还通过欧洲 PubMed Central 随机抽取了 500 篇未开放获取的牙科文章作为样本。我们评估了文章中的数据共享情况以及共享数据对 FAIR 原则的遵守情况。结果表明,在所调查的 7509 篇文章中,有 112 篇(1.5%)共享了数据。符合 FAIR 指标的平均(SD)水平为 32.6%(31.9%)。每个指标的平均值如下:可查找性,7 分中的 3.4(2.7);可访问性,3 分中的 1.0(1.0);互操作性,4 分中的 1.1(1.2);可重用性,10 分中的 2.4(2.6)。多年来,数据共享或共享数据的质量没有明显变化。我们的研究结果表明,牙科研究人员很少共享数据,而且即使他们共享了数据,FAIR 质量也不理想。机器学习算法只能理解 1%的可用牙科研究数据。这破坏了牙科研究的可重复性,并阻碍了从机器学习算法和应用程序中获取知识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e628/9516597/8e541fc6030e/10.1177_00220345221101321-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验