Luo Jingying, Tong Xin, Yue Shuai, Wu Keming, Li Xin, Zhao Hongyang, Wang Binyu, Li Zhuojian, Liu Xinfeng, Wang Zhiming M
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
Yunnan Key Laboratory of Electromagnetic Materials and Devices, Yunnan University, Kunming 650091, China.
ACS Nano. 2024 Oct 29;18(43):29991-30003. doi: 10.1021/acsnano.4c10795. Epub 2024 Oct 21.
Colloidal quantum dots (QDs) are emerging as potential candidates for constructing near-infrared (NIR) photodetectors (PDs) and artificial optoelectronic synapses due to solution processability and a tunable bandgap. However, most of the current NIR QDs-optoelectronic devices are still fabricated using QDs with incorporated harmful heavy metals of lead (Pb) and mercury (Hg), showing potential health and environment risks. In this work, we tailored eco-friendly reverse type-I ZnSe/InP QDs by copper (Cu) doping and extended the photoresponse from the visible to NIR region. Transient absorption spectroscopy analysis revealed the presence of Cu dopant states in ZnSe/InP:Cu QDs that facilitated the extraction of photogenerated charge carriers, leading to an enhanced photodetection performance. Specifically, under 400 nm illumination, the Cu-doped ZnSe/InP QDs-based PDs presented a broadband photodetection ranging from ultraviolet (UV) to NIR, with a responsivity of 70.5 A W and detectivity of 2.8 × 10 Jones, surpassing those of the undoped ZnSe/InP QDs-based PDs (49.4 A W and 1.9 × 10 Jones, respectively). More importantly, the ZnSe/InP:Cu QDs-PDs demonstrated various synapse-like characteristics of short-term plasticity (STP), long-term plasticity (LTP), and learning-forging-relearning under NIR light illumination, which were further used to construct PD array devices for simulating the artificial visual system that is available in prospective optical neuromorphic applications.
由于具有溶液可加工性和可调节的带隙,胶体量子点(QDs)正成为构建近红外(NIR)光电探测器(PDs)和人工光电突触的潜在候选材料。然而,目前大多数近红外量子点光电器件仍使用含有有害重金属铅(Pb)和汞(Hg)的量子点制造,存在潜在的健康和环境风险。在这项工作中,我们通过铜(Cu)掺杂定制了环保型反I型ZnSe/InP量子点,并将光响应从可见光区域扩展到近红外区域。瞬态吸收光谱分析表明,ZnSe/InP:Cu量子点中存在铜掺杂态,这促进了光生电荷载流子的提取,从而提高了光电探测性能。具体而言,在400 nm光照下,基于铜掺杂ZnSe/InP量子点的光电探测器呈现出从紫外(UV)到近红外的宽带光电探测,响应度为70.5 A/W,探测率为2.8×10 Jones,超过了基于未掺杂ZnSe/InP量子点的光电探测器(分别为49.4 A/W和1.9×10 Jones)。更重要的是,ZnSe/InP:Cu量子点光电探测器在近红外光照下表现出短期可塑性(STP)、长期可塑性(LTP)和学习-遗忘-再学习等各种类似突触的特性,这些特性进一步被用于构建用于模拟人工视觉系统的光电探测器阵列器件,有望应用于未来的光学神经形态应用中。