de Paz-Castany Roger, Eiler Konrad, Nicolenco Aliona, Lekka Maria, García-Lecina Eva, Brunin Guillaume, Rignanese Gian-Marco, Waroquiers David, Collet Thomas, Hubin Annick, Pellicer Eva
Physics Department, Universitat Autònoma de Barcelona, Campus de la UAB, 08193, Bellaterra, Cerdanyola del Vallès, Spain.
CIDETEC, Basque Research and Technology Alliance (BRTA), P° Miramón 196, 20014, San Sebastián, Spain.
ChemSusChem. 2025 Mar 3;18(5):e202400444. doi: 10.1002/cssc.202400444. Epub 2024 Nov 13.
Ni-W alloy films were electrodeposited from a gluconate aqueous bath at pH=5.0, at varying current densities and temperatures. While there is little to no difference in composition, i. e., all films possess ~12 at.% W, their activity at hydrogen evolution reaction (HER) in acidic medium is greatly influenced by differences in surface morphology. The kinetics of HER in 0.5 M HSO indicates that the best performing film was obtained at a current density of -4.8 mA/cm and 50 °C. The Tafel slopes (b) and the overpotentials at a geometric current density of -10 mA/cm (η) obtained for 200 cycles of linear sweep voltammetry (LSV) from a set of films deposited using different parameters were fed into a machine learning algorithm to predict optimum deposition conditions to minimize b, η, and the degradation of samples over time. The optimum deposition conditions predicted by the machine learning model led to the electrodeposition of Ni-W films with superior performance, exhibiting b of 33-45 mV/dec and an η of 0.09-0.10 V after 200 LSVs.
在pH = 5.0的葡萄糖酸水溶液中,于不同的电流密度和温度下电沉积Ni-W合金薄膜。虽然在成分上几乎没有差异,即所有薄膜都含有约12 at.%的W,但它们在酸性介质中析氢反应(HER)的活性受到表面形态差异的极大影响。在0.5 M HSO中HER的动力学表明,在电流密度为-4.8 mA/cm²和50 °C时获得了性能最佳的薄膜。从一组使用不同参数沉积的薄膜中,通过200次线性扫描伏安法(LSV)获得的塔菲尔斜率(b)以及在几何电流密度为-10 mA/cm²时的过电位(η)被输入到机器学习算法中,以预测最佳沉积条件,从而使b、η以及样品随时间的降解最小化。机器学习模型预测的最佳沉积条件导致电沉积出性能优异的Ni-W薄膜,在200次LSV后,其b为33 - 45 mV/dec,η为0.09 - 0.10 V。