Sustainable Bioeconomy Research Group, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
School of Environment, Tsinghua University, Beijing 100084, China.
Environ Sci Technol. 2024 Nov 5;58(44):19595-19603. doi: 10.1021/acs.est.4c07634. Epub 2024 Oct 21.
The accuracy of life cycle assessment (LCA) studies is often questioned due to the two grand challenges of life cycle inventory (LCI) modeling: (1) missing foreground flow data and (2) inconsistency in background data matching. Traditional mechanistic methods (e.g., process simulation) and existing machine learning (ML) methods (e.g., similarity-based selection methods) are inadequate due to their limitations in scalability and generalizability. The large language models (LLMs) are well-positioned to address these challenges, given the massive and diverse knowledge learned through the pretraining step. Incorporating LLMs into LCI modeling can lead to the automation of inventory data curation from diverse data sources and to the implementation of a multimodal analytical capacity. In this article, we delineated the mechanisms and advantages of LLMs to addressing these two grand challenges. We also discussed the future research to enhance the use of LLMs for LCI modeling, which includes the key areas such as improving retrieval augmented generation (RAG), integration with knowledge graphs, developing prompt engineering strategies, and fine-tuning pretrained LLMs for LCI-specific tasks. The findings from our study serve as a foundation for future research on scalable and automated LCI modeling methods that can provide more appropriate data for LCA calculations.
生命周期评估 (LCA) 研究的准确性经常受到质疑,原因是生命周期清单 (LCI) 建模面临两个重大挑战:(1) 缺少前景流量数据,(2) 背景数据匹配不一致。传统的机械方法(例如,过程模拟)和现有的机器学习 (ML) 方法(例如,基于相似性的选择方法)由于其在可扩展性和通用性方面的局限性而不足。鉴于大型语言模型 (LLM) 在预训练步骤中学习到的大量和多样化的知识,它们非常适合解决这些挑战。将 LLM 纳入 LCI 建模可以实现从各种数据源自动进行清单数据编纂,并实现多模式分析能力。本文阐述了 LLM 解决这两个重大挑战的机制和优势。我们还讨论了未来增强 LLM 在 LCI 建模中应用的研究,包括改进检索增强生成 (RAG)、与知识图谱集成、开发提示工程策略以及针对 LCI 特定任务微调预训练 LLM 等关键领域。我们的研究结果为未来研究可提供更合适 LCA 计算数据的可扩展和自动化 LCI 建模方法奠定了基础。