Suppr超能文献

16S rRNA 基因序列分析的选择影响了乳品加工环境中高度可变表面微生物群落的特征分析。

The choice of 16S rRNA gene sequence analysis impacted characterization of highly variable surface microbiota in dairy processing environments.

机构信息

Department of Food Science, Cornell University, Ithaca, New York, USA.

Department of Food Science, Pennsylvania State University, University Park, Pennsylvania, USA.

出版信息

mSystems. 2024 Nov 19;9(11):e0062024. doi: 10.1128/msystems.00620-24. Epub 2024 Oct 21.

Abstract

Accurate knowledge of the microbiota collected from surfaces in food processing environments is important for food quality and safety. This study assessed discrepancies in taxonomic composition and alpha and beta diversity values generated from eight different bioinformatic workflows for the analysis of 16S rRNA gene sequences extracted from the microbiota collected from surfaces in dairy processing environments. We found that the microbiota collected from environmental surfaces varied widely in density (0-9.09 log CFU/cm) and Shannon alpha diversity (0.01-3.40). Consequently, depending on the sequence analysis method used, characterization of low-abundance genera (i.e., below 1% relative abundance) and the number of genera identified (114-173 genera) varied considerably. Some low-abundance genera, including , varied between the amplicon sequence variant (ASV) and operational taxonomic unit (OTU) methods. Centered log-ratio transformation inflated alpha and beta diversity values compared to rarefaction. Furthermore, the ASV method also inflated alpha and beta diversity values compared to the OTU method ( < 0.05). Therefore, for sparse, uneven, low-density data sets, the OTU method and rarefaction are better for taxonomic and ecological characterization of surface microbiota.IMPORTANCECulture-dependent environmental monitoring programs are used by the food industry to identify foodborne pathogens and spoilage biota on surfaces in food processing environments. The use of culture-independent 16S rRNA amplicon sequencing to characterize this surface microbiota has been proposed as a tool to enhance environmental monitoring. However, there is no consensus on the most suitable bioinformatic analyses to accurately capture the diverse levels and types of bacteria on surfaces in food processing environments. Here, we quantify the impact of different bioinformatic analyses on the results and interpretation of 16S rRNA amplicon sequences collected from three cultured dairy facilities in New York State. This study provides guidance for the selection of appropriate 16S rRNA analysis procedures for studying environmental microbiota in dairy processing environments.

摘要

准确了解食品加工环境表面采集的微生物群落对于食品质量和安全至关重要。本研究评估了用于分析从乳制品加工环境表面采集的微生物群落中提取的 16S rRNA 基因序列的八个不同生物信息学工作流程产生的分类组成和α和β多样性值的差异。我们发现,环境表面采集的微生物群落的密度(0-9.09 log CFU/cm)和 Shannon α多样性(0.01-3.40)差异很大。因此,根据使用的序列分析方法,低丰度属(即相对丰度低于 1%)的特征描述和鉴定的属数量(114-173 属)变化很大。一些低丰度属,包括 ,在扩增子序列变异(ASV)和操作分类单元(OTU)方法之间存在差异。中心对数比变换与稀疏化相比,会放大α和β多样性值。此外,与 OTU 方法相比,ASV 方法也会放大α和β多样性值(<0.05)。因此,对于稀疏、不均匀、低密度数据集,OTU 方法和稀疏化更适合表面微生物群落的分类和生态特征描述。

重要性:食品行业使用基于培养的环境监测计划来识别食品加工环境表面的食源性病原体和腐败生物群。使用非培养 16S rRNA 扩增子测序来描述这种表面微生物群已被提议作为增强环境监测的工具。然而,对于最适合准确捕获食品加工环境表面细菌的多样性水平和类型的生物信息学分析方法,尚无共识。在这里,我们量化了不同生物信息学分析对从纽约州三个培养乳制品厂收集的 16S rRNA 扩增子序列的结果和解释的影响。这项研究为在乳制品加工环境中研究环境微生物群选择适当的 16S rRNA 分析程序提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4e7/11575208/622766afdc25/msystems.00620-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验