College of Economics and Management, Beijing University of Technology, No. 100 PingLeYuan, Chaoyang District, Beijing 100124, P.R. China.
Institute of Scientific and Technical Information of China, No. 15 Fuxing Road, Haidian District, Beijing 100038, P.R. China.
Database (Oxford). 2024 Oct 21;2024. doi: 10.1093/database/baae106.
The ever-increasing volume of COVID-19-related articles presents a significant challenge for the manual curation and multilabel topic classification of LitCovid. For this purpose, a novel multilabel topic classification framework is developed in this study, which considers both the correlation and imbalance of topic labels, while empowering the pretrained model. With the help of this framework, this study devotes to answering the following question: Do full texts, MeSH (Medical Subject Heading), and biological entities of articles about COVID-19 encode more discriminative information than metadata (title, abstract, keyword, and journal name)? From extensive experiments on our enriched version of the BC7-LitCovid corpus and Hallmarks of Cancer corpus, the following conclusions can be drawn. Our framework demonstrates superior performance and robustness. The metadata of scientific publications about COVID-19 carries valuable information for multilabel topic classification. Compared to biological entities, full texts and MeSH can further enhance the performance of our framework for multilabel topic classification, but the improved performance is very limited. Database URL: https://github.com/pzczxs/Enriched-BC7-LitCovid.
不断增加的 COVID-19 相关文献数量给 LitCovid 的人工策展和多标签主题分类带来了重大挑战。为此,本研究提出了一种新的多标签主题分类框架,该框架考虑了主题标签的相关性和不平衡性,同时增强了预训练模型的能力。借助该框架,本研究致力于回答以下问题:关于 COVID-19 的文章的全文、MeSH(医学主题词)和生物实体是否比元数据(标题、摘要、关键词和期刊名称)编码更多的鉴别信息?通过对我们丰富的 BC7-LitCovid 语料库和癌症特征 Hallmarks 语料库的广泛实验,可以得出以下结论。我们的框架表现出优越的性能和鲁棒性。COVID-19 相关科学出版物的元数据对多标签主题分类具有有价值的信息。与生物实体相比,全文和 MeSH 可以进一步提高我们的多标签主题分类框架的性能,但改进的性能非常有限。数据库 URL:https://github.com/pzczxs/Enriched-BC7-LitCovid。