Buizert Christo, Sowers Todd A, Niezgoda Kyle, Blunier Thomas, Gkinis Vasileios, Harlan Margaret, He Chengfei, Jones Tyler R, Kjaer Helle A, Liisberg Jesper B, Menking James A, Morris Valerie, Noone David, Rasmussen Sune Olander, Sime Louise C, Steffensen Jørgen P, Svensson Anders, Vaughn Bruce H, Vinther Bo M, White James W C
College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis OR 97331.
The Earth and Environmental Systems Institute, Pennsylvania State University, University Park, PA 16802.
Proc Natl Acad Sci U S A. 2024 Oct 29;121(44):e2402637121. doi: 10.1073/pnas.2402637121. Epub 2024 Oct 21.
Pleistocene Ice Ages display abrupt Dansgaard-Oeschger (DO) climate oscillations that provide prime examples of Earth System tipping points-abrupt transition that may result in irreversible change. Greenland ice cores provide key records of DO climate variability, but gas-calibrated estimates of the temperature change magnitudes have been limited to central and northwest Greenland. Here, we present ice-core δN-N records from south (Dye 3) and coastal east Greenland (Renland) to calibrate the local water isotope thermometer and provide a Greenland-wide spatial characterization of DO event magnitude. We combine these data with existing records of δO, deuterium excess, and accumulation rates to create a multiproxy "fingerprint" of the DO impact on Greenland. Isotope-enabled climate models have skill in simulating the observational multiproxy DO event impact, and we use a series of idealized simulations with such models to identify regions of the North Atlantic that are critical in explaining DO variability. Our experiments imply that wintertime sea ice variation in the subpolar gyre, rather than the commonly invoked Nordic Seas, is both a sufficient and a necessary condition to explain the observed DO impacts in Greenland, whatever the distal cause. Moisture-tagging experiments support the idea that Greenland DO isotope signals may be explained almost entirely via changes in the vapor source distribution and that site temperature is not a main control on δO during DO transitions, contrary to the traditional interpretation. Our results provide a comprehensive, multiproxy, data-model synthesis of abrupt DO climate variability in Greenland.
更新世冰河时期呈现出突然的丹斯加德-厄施格(DO)气候振荡,这为地球系统临界点——可能导致不可逆转变化的突然转变——提供了典型例子。格陵兰冰芯提供了DO气候变化的关键记录,但温度变化幅度的气体校准估计仅限于格陵兰中部和西北部。在此,我们展示了来自格陵兰南部(戴伊3号)和东部沿海(伦兰)的冰芯δN-N记录,以校准当地的水同位素温度计,并提供全格陵兰范围内DO事件幅度的空间特征描述。我们将这些数据与现有的δO、氘过量和积累率记录相结合,以创建一个多指标的“指纹”,用于描述DO对格陵兰的影响。启用同位素的气候模型在模拟观测到的多指标DO事件影响方面具有技能,我们使用一系列此类模型的理想化模拟来确定北大西洋中对解释DO变化至关重要的区域。我们的实验表明,亚极地环流冬季海冰变化,而非通常提到的北欧海域,是解释在格陵兰观测到的DO影响的充分必要条件,无论其远端原因是什么。水汽标记实验支持这样一种观点,即格陵兰DO同位素信号几乎可以完全通过蒸汽源分布的变化来解释,并且在DO转变期间,站点温度不是δO的主要控制因素,这与传统解释相反。我们的结果提供了一个关于格陵兰突然的DO气候变化的全面、多指标、数据-模型综合。