Suppr超能文献

毒性适应性列表设计:肿瘤学中 I 期药物联合试验的实用设计。

Toxicity Adaptive Lists Design: A Practical Design for Phase I Drug Combination Trials in Oncology.

机构信息

Department of Statistics, The Ohio State University, Columbus, OH.

Dipartimento di Scienze Statistiche, Sapienza University of Rome, Rome, Italy.

出版信息

JCO Precis Oncol. 2024 Oct;8:e2400275. doi: 10.1200/PO.24.00275. Epub 2024 Oct 21.

Abstract

PURPOSE

We introduce a novel algorithmic approach to design phase I trials for oncology drug combinations.

METHODS

Our proposed Toxicity Adaptive Lists Design (TALE) is straightforward to implement, requiring the prespecification of a small number of parameters that define rules governing dose escalation, de-escalation, or reassessment of previously explored dose levels. These rules effectively regulate dose exploration and control the number of toxicities. A key feature of TALE is the possibility of simultaneous assignment of multiple-dose combinations that are deemed safe by previously accrued data.

RESULTS

A numerical study shows that TALE shares comparable operative characteristics, in terms of identification of the maximum tolerated dose (MTD), to alternative approaches such as the Bayesian optimal interval design, the COPULA, the product of independent beta probabilities escalation, and the continual reassessment method for partial ordering designs while reducing the risk of overdosing patients.

CONCLUSION

The proposed TALE design provides a favorable balance between maintaining patient safety and accurately identifying the MTD. To facilitate the use of TALE, we provide a user-friendly R Shiny application and an R package for computing relevant operating characteristics, such as the risk of assigning highly toxic dose combinations.

摘要

目的

我们介绍了一种用于肿瘤药物组合的 I 期临床试验设计的新算法方法。

方法

我们提出的毒性自适应列表设计(TALE)易于实施,需要预先指定少量参数,这些参数定义了控制剂量递增、递减或重新评估先前探索的剂量水平的规则。这些规则有效地调节了剂量探索并控制了毒性的数量。TALE 的一个关键特征是可以同时分配多个剂量组合,这些组合被先前累积的数据认为是安全的。

结果

一项数值研究表明,TALE 在确定最大耐受剂量(MTD)方面具有与替代方法(如贝叶斯最优区间设计、COPULA、独立β概率递增的乘积和偏序设计的连续再评估方法)相当的操作特性,同时降低了患者过度用药的风险。

结论

所提出的 TALE 设计在保持患者安全和准确确定 MTD 之间提供了有利的平衡。为了方便使用 TALE,我们提供了一个用户友好的 R Shiny 应用程序和一个用于计算相关操作特性的 R 包,例如分配高毒性剂量组合的风险。

相似文献

8
Dose-finding design for multi-drug combinations.多药物组合的剂量发现设计。
Clin Trials. 2011 Aug;8(4):380-9. doi: 10.1177/1740774511408748. Epub 2011 Jun 7.

本文引用的文献

2
The Ci3+3 design for dual-agent combination dose-finding clinical trials.
J Biopharm Stat. 2021 Nov 2;31(6):745-764. doi: 10.1080/10543406.2021.1998096. Epub 2021 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验