Suppr超能文献

肺癌组织微生物组中潜在的计算生物标志物的鉴定。

Identifications of the potential in-silico biomarkers in lung cancer tissue microbiomes.

机构信息

Faculty of Arts and Sciences, Harvard University, Cambridge, MA, 02138, USA; Microbiome Medicine and Advanced AI Lab, Cambridge, MA, 02138, USA; Computational Biology and Medical Ecology Lab, Kunming Institute of Zoology, Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.

Computational Biology and Medical Ecology Lab, Kunming Institute of Zoology, Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.

出版信息

Comput Biol Med. 2024 Dec;183:109231. doi: 10.1016/j.compbiomed.2024.109231. Epub 2024 Oct 20.

Abstract

It is postulated that the tumor tissue microbiome is one of the enabling characteristics that can either promote or suppress the ability of tumors to acquire certain hallmarks of cancer. This underscores its critical importance in carcinogenesis, cancer progression, and therapy responses. However, characterizing the tumor microbiomes is extremely challenging because of their low biomass and severe difficulties in controlling laboratory-borne contaminants, which is further aggravated by lack of comprehensively effective computational approaches to identify unique or enriched microbial species associated with cancers. Here we take advantage of a recent computational framework by Ma (2024), termed metagenome comparison (MC) framework (MCF), which can detect treatment-specific, unique or enriched OMUs (operational metagenomic unit), or US/ES (unique/enriched species) when adapted for this study. We apply the MCF to reanalyze four lung cancer tissue microbiome datasets, which include samples from Lung Adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma (LUSC), and their adjacent normal tissue (NT) controls. Our analysis is structured around three distinct schemes: Scheme I-separately detecting the US/ES for each of the four lung cancer microbiome datasets; Scheme II-consolidation of the four datasets followed by detection of US/ES in the combined datasets; Scheme III-construction of the union and intersection sets of US/ES derived from the results of the preceding two schemes. The generated lists of US/ES, including enriched microbial phyla, likely hold significant biomedical value for developing diagnostic and prognostic biomarkers for lung cancer risk assessment, improving the efficacy of immunotherapy, and designing novel microbiome-based therapies in lung cancer research.

摘要

据推测,肿瘤组织微生物组是促进或抑制肿瘤获得某些癌症特征的能力的特征之一。这凸显了它在致癌、癌症进展和治疗反应中的关键重要性。然而,由于其生物量低,以及在控制实验室污染方面存在严重困难,因此对肿瘤微生物组进行特征描述极具挑战性,这进一步加剧了缺乏全面有效的计算方法来识别与癌症相关的独特或丰富的微生物物种。在这里,我们利用 Ma(2024)最近提出的一种计算框架,即宏基因组比较(MC)框架(MCF),当适用于本研究时,该框架可以检测到治疗特异性的、独特的或丰富的 OMUs(操作宏基因组单位)或 US/ES(独特/丰富的物种)。我们应用 MCF 重新分析了四个肺癌组织微生物组数据集,其中包括肺腺癌(LUAD)、肺鳞状细胞癌(LUSC)及其相邻正常组织(NT)对照的样本。我们的分析围绕三个不同的方案展开:方案 I-分别检测四个肺癌微生物组数据集的 US/ES;方案 II-合并四个数据集,然后在合并的数据集检测 US/ES;方案 III-构建源自前两个方案结果的 US/ES 的并集和交集。生成的 US/ES 列表,包括丰富的微生物门,可能对开发肺癌风险评估的诊断和预后生物标志物、提高免疫疗法的疗效以及设计肺癌研究中的新型基于微生物组的疗法具有重要的生物医学价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验