Malaviya Pooja, Kumar Jay, Kowluru Renu A
Kresge Eye Institute, Wayne State University, Detroit, MI, USA.
Kresge Eye Institute, Wayne State University, Detroit, MI, USA.
Free Radic Biol Med. 2024 Nov 20;225:821-832. doi: 10.1016/j.freeradbiomed.2024.10.296. Epub 2024 Oct 19.
Diabetic retinopathy is driven by oxidative stress-mitochondrial damage. Activation of ROS producing cytosolic NADPH oxidase 2 (Nox2) in diabetes precedes retinal mitochondrial damage, initiating a vicious cycle of free radicals. Elevated ROS levels peroxidize membrane lipids increasing damaging lipid peroxides (LPOs). While glutathione peroxidase 4 (GPx4) neutralizes LPOs, an imbalance in its generation-neutralization leads to ferroptosis, which is characterized by increased LPOs, free iron and decreased GPx4 activity. Mitochondria are rich in polyunsaturated fatty acids and iron and have mitochondrial isoform of GPx4. Our aim was to investigate mitochondrial ferroptosis in diabetic retinopathy, focusing on Nox2 mediated ROS production. Using human retinal endothelial cells, incubated in 5 mM or 20 mM D-glucose for 12-96 h, with or without Nox2 inhibitors (100 μM apocynin, 5 μM EHop-016 or 5 μM Gp91 ds-tat), or ferroptosis inhibitors (1 μM ferrostatin-1, 50 μM deferoxamine) or activator (0.1 μM RSL3), cytosolic and mitochondrial ROS, LPOs, iron, GPx4 activity, mitochondrial integrity (membrane permeability, oxygen consumption rate, mtDNA copy numbers) and cell death were quantified. High glucose significantly increased ROS, LPOs and iron levels and inhibited GPx4 activity in cytosol, and while Nox2 and ferroptosis inhibitors prevented glucose-induced increase in ferroptosis markers, mitochondrial damage and cell death, RSL3, further worsened them. Furthermore, high glucose also increased ferroptosis markers in the mitochondria, which followed their increase in the cytosol, suggesting a role of cytosolic ROS in mitochondrial ferroptosis. Thus, targeting Nox2-ferroptosis should help break down the self-perpetuating vicious cycle of free radicals, initiated by the damaged mitochondria, and could provide novel therapeutics to prevent/retard the development of diabetic retinopathy.
糖尿病性视网膜病变是由氧化应激 - 线粒体损伤驱动的。糖尿病中产生活性氧的胞质烟酰胺腺嘌呤二核苷酸磷酸氧化酶2(Nox2)的激活先于视网膜线粒体损伤,引发自由基的恶性循环。升高的活性氧水平使膜脂过氧化,增加有害的脂质过氧化物(LPOs)。虽然谷胱甘肽过氧化物酶4(GPx4)可中和LPOs,但其生成 - 中和的失衡会导致铁死亡,其特征是LPOs增加、游离铁增加以及GPx4活性降低。线粒体富含多不饱和脂肪酸和铁,并且具有GPx4的线粒体异构体。我们的目的是研究糖尿病性视网膜病变中的线粒体铁死亡,重点关注Nox2介导的活性氧生成。使用人视网膜内皮细胞,在5 mM或20 mM D - 葡萄糖中孵育12 - 96小时,添加或不添加Nox2抑制剂(100 μM 夹竹桃麻素、5 μM EHop - 016或5 μM Gp91 ds - tat)、铁死亡抑制剂(1 μM 铁抑素 - 1、50 μM 去铁胺)或激活剂(0.1 μM RSL3),对胞质和线粒体活性氧、LPOs、铁、GPx4活性、线粒体完整性(膜通透性、氧消耗率、线粒体DNA拷贝数)和细胞死亡进行定量分析。高糖显著增加了活性氧、LPOs和铁水平,并抑制了胞质中的GPx4活性,而Nox2和铁死亡抑制剂可防止葡萄糖诱导的铁死亡标志物增加、线粒体损伤和细胞死亡,RSL3则进一步加重了这些情况。此外,高糖还增加了线粒体中的铁死亡标志物,且其变化跟随胞质中的增加,表明胞质活性氧在线粒体铁死亡中起作用。因此,靶向Nox2 - 铁死亡应有助于打破由受损线粒体引发的自由基自我延续的恶性循环,并可为预防/延缓糖尿病性视网膜病变的发展提供新的治疗方法。