Suppr超能文献

Immobilization of laccases on mechanically ground silk fibroin nanofibers for enhanced stability.

作者信息

Miyawaki Ayari, Sakai Shinji

机构信息

Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.

Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.

出版信息

Int J Biol Macromol. 2024 Dec;282(Pt 1):136745. doi: 10.1016/j.ijbiomac.2024.136745. Epub 2024 Oct 19.

Abstract

Azo dyes in textile industry effluents pose significant health and environmental risks. Laccase is an enzyme capable of degrading azo dyes, offering an environmentally friendly solution for treating textile wastewater. However, laccases need to be immobilized on specific carriers to enable effective reuse in batch reactors and continuous operation in flow-through reactors. This study employed silk fibroin nanofibers (SFNFs) obtained by mechanically grinding degummed silkworm silk as sustainable carriers to immobilize laccases through carbodiimide-mediated crosslinking. The immobilized laccases (SFNF-laccases) exhibited improved pH tolerance in the range of pH 3.0-8.0 with a smaller reduction in activity compared to free laccases (SFNF-laccases: 32.9 %, free laccases: 50.4 %). The thermal stability of immobilized laccases was also improved, showing 19, 13, and 9 % higher activities than those of free laccases at 40, 50, and 60 °C, respectively. After 8 days of storage, the activity of SFNF-laccases was 79 % of their activity immediately after immobilization, whereas free laccases retained only 29 % of their initial activity. In addition, SFNF-laccases maintained 73 % of their original operational activity in a flow-through reactor after 8 days. These results demonstrate the great potential of mechanically ground SFNFs as carriers of laccase and the resulting SFNF-laccases in industrial wastewater treatment.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验