Suppr超能文献

巨大的室温非互易霍尔效应。

Colossal room-temperature non-reciprocal Hall effect.

作者信息

Min Lujin, Zhang Yang, Xie Zhijian, Ayyagari Sai Venkata Gayathri, Miao Leixin, Onishi Yugo, Lee Seng Huat, Wang Yu, Alem Nasim, Fu Liang, Mao Zhiqiang

机构信息

Department of Physics, Pennsylvania State University, University Park, PA, USA.

Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA.

出版信息

Nat Mater. 2024 Dec;23(12):1671-1677. doi: 10.1038/s41563-024-02015-7. Epub 2024 Oct 21.

Abstract

Non-reciprocal charge transport has gained significant attention due to its potential in exploring quantum symmetry and its promising applications. Traditionally, non-reciprocal transport has been observed in the longitudinal direction, with non-reciprocal resistance being a small fraction of the ohmic resistance. Here we report a transverse non-reciprocal transport phenomenon featuring a quadratic current-voltage characteristic and divergent non-reciprocity, termed the non-reciprocal Hall effect. This effect is observed in microscale Hall devices fabricated from platinum (Pt) deposited by a focused ion beam on silicon substrates. The transverse non-reciprocal Hall effect arises from the geometrically asymmetric scattering of textured Pt nanoparticles within the focused-ion-beam-deposited Pt structures. Notably, the non-reciprocal Hall effect generated in focused-ion-beam-deposited Pt electrodes can propagate to adjacent conductors such as Au and NbP through Hall current injection. Additionally, this pronounced non-reciprocal Hall effect facilitates broadband frequency mixing. These findings not only validate the non-reciprocal Hall effect concept but also open avenues for its application in terahertz communication, imaging and energy harvesting.

摘要

由于在探索量子对称性方面的潜力及其广阔的应用前景,非互易电荷传输已引起了广泛关注。传统上,非互易传输是在纵向方向上观察到的,非互易电阻仅占欧姆电阻的一小部分。在此,我们报道了一种横向非互易传输现象,其具有二次电流 - 电压特性和发散的非互易性,称为非互易霍尔效应。这种效应在通过聚焦离子束沉积在硅衬底上的铂(Pt)制成的微尺度霍尔器件中被观察到。横向非互易霍尔效应源于聚焦离子束沉积的Pt结构中纹理化Pt纳米颗粒的几何不对称散射。值得注意的是,在聚焦离子束沉积的Pt电极中产生的非互易霍尔效应可以通过霍尔电流注入传播到相邻导体,如Au和NbP。此外,这种显著的非互易霍尔效应有助于宽带频率混合。这些发现不仅验证了非互易霍尔效应的概念,还为其在太赫兹通信、成像和能量收集方面的应用开辟了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验