State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-tian Road, Shanghai, 200083, China.
University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
Adv Mater. 2023 Mar;35(10):e2209557. doi: 10.1002/adma.202209557. Epub 2023 Jan 22.
The zero-magnetic-field nonlinear Hall effect (NLHE) refers to the second-order transverse current induced by an applied alternating electric field; it indicates the topological properties of inversion-symmetry-breaking crystals. Despite several studies on the NLHE induced by the Berry-curvature dipole in Weyl semimetals, the direct current conversion by rectification is limited to very low driving frequencies and cryogenic temperatures. The nonlinear photoresponse generated by the NLHE at room temperature can be useful for numerous applications in communication, sensing, and photodetection across a high bandwidth. In this study, observations of the second-order NLHE in type-II Dirac semimetal CoTe under time-reversal symmetry are reported. This is determined by the disorder-induced extrinsic contribution on the broken-inversion-symmetry surface and room-temperature terahertz rectification without the need for semiconductor junctions or bias voltage. It is shown that remarkable photoresponsivity over 0.1 A W , a response time of approximately 710 ns, and a mean noise equivalent power of 1 pW Hz can be achieved at room temperature. The results open a new pathway for low-energy photon harvesting via nonlinear rectification induced by the NLHE in strongly spin-orbit-coupled and inversion-symmetry-breaking systems, promising a considerable impact in the field of infrared/terahertz photonics.
零磁场非线性霍尔效应(NLHE)是指在外加交变电场作用下产生的二阶横向电流,它表明了具有非中心对称晶体的拓扑性质。尽管已有几项关于外尔半金属中 Berry 曲率偶极子诱导的 NLHE 的研究,但由于直流转换受到非常低的驱动频率和低温的限制,因此限制了其应用。室温下 NLHE 产生的非线性光响应可用于在高带宽范围内进行通信、传感和光电探测等众多应用。本研究报告了在时间反演对称下观察到的 II 型狄拉克半金属 CoTe 中的二阶 NLHE。这是由非晶态诱导的外禀贡献在非中心对称表面上引起的,并且无需半导体结或偏置电压即可在室温下进行太赫兹整流。结果表明,在室温下可以实现超过 0.1 A W 的显著光响应率、大约 710 ns 的响应时间和 1 pW Hz 的平均噪声等效功率。这些结果为利用强自旋轨道耦合和非中心对称破坏系统中的 NLHE 进行低能光子收集开辟了新途径,有望在红外/太赫兹光子学领域产生重大影响。