Thanh Phuc Phan, Nguyen Phung-Anh, Nguyen Nam Nhat, Hsu Min-Huei, Le Nguyen Quoc Khanh, Tran Quoc-Viet, Huang Chih-Wei, Yang Hsuan-Chia, Chen Cheng-Yu, Le Thi Anh Hoa, Le Minh Khoi, Nguyen Hoang Bac, Lu Christine Y, Hsu Jason C
College of Management, Taipei Medical University, New Taipei, Taiwan.
University Medical Center, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam.
J Med Internet Res. 2024 Dec 11;26:e52107. doi: 10.2196/52107.
The possible association between diabetes mellitus and dementia has raised concerns, given the observed coincidental occurrences.
This study aimed to develop a personalized predictive model, using artificial intelligence, to assess the 5-year and 10-year dementia risk among patients with type 2 diabetes mellitus (T2DM) who are prescribed antidiabetic medications.
This retrospective multicenter study used data from the Taipei Medical University Clinical Research Database, which comprises electronic medical records from 3 hospitals in Taiwan. This study applied 8 machine learning algorithms to develop prediction models, including logistic regression, linear discriminant analysis, gradient boosting machine, light gradient boosting machine, AdaBoost, random forest, extreme gradient boosting, and artificial neural network (ANN). These models incorporated a range of variables, encompassing patient characteristics, comorbidities, medication usage, laboratory results, and examination data.
This study involved a cohort of 43,068 patients diagnosed with type 2 diabetes mellitus, which accounted for a total of 1,937,692 visits. For model development and validation, 1,300,829 visits were used, while an additional 636,863 visits were reserved for external testing. The area under the curve of the prediction models range from 0.67 for the logistic regression to 0.98 for the ANNs. Based on the external test results, the model built using the ANN algorithm had the best area under the curve (0.97 for 5-year follow-up period and 0.98 for 10-year follow-up period). Based on the best model (ANN), age, gender, triglyceride, hemoglobin A, antidiabetic agents, stroke history, and other long-term medications were the most important predictors.
We have successfully developed a novel, computer-aided, dementia risk prediction model that can facilitate the clinical diagnosis and management of patients prescribed with antidiabetic medications. However, further investigation is required to assess the model's feasibility and external validity.
鉴于观察到糖尿病与痴呆症同时出现的情况,二者之间可能存在的关联引发了人们的关注。
本研究旨在利用人工智能开发一种个性化预测模型,以评估接受抗糖尿病药物治疗的2型糖尿病(T2DM)患者5年和10年的痴呆风险。
这项回顾性多中心研究使用了台北医学大学临床研究数据库的数据,该数据库包含台湾3家医院的电子病历。本研究应用8种机器学习算法来开发预测模型,包括逻辑回归、线性判别分析、梯度提升机、轻量级梯度提升机、AdaBoost、随机森林、极限梯度提升和人工神经网络(ANN)。这些模型纳入了一系列变量,包括患者特征、合并症、用药情况、实验室检查结果和检查数据。
本研究纳入了43068例被诊断为2型糖尿病的患者队列,总计就诊1937692次。为了进行模型开发和验证,使用了1300829次就诊数据,另外636863次就诊数据留作外部测试。预测模型的曲线下面积范围从逻辑回归的0.67到人工神经网络的0.98。根据外部测试结果,使用人工神经网络算法构建的模型具有最佳的曲线下面积(5年随访期为0.97,10年随访期为0.98)。基于最佳模型(人工神经网络),年龄、性别、甘油三酯、糖化血红蛋白、抗糖尿病药物、中风病史和其他长期用药是最重要的预测因素。
我们成功开发了一种新型的、计算机辅助的痴呆风险预测模型,该模型可促进接受抗糖尿病药物治疗患者的临床诊断和管理。然而,需要进一步研究来评估该模型的可行性和外部有效性。