Suppr超能文献

基于LASSO-Cox回归的坏死性小肠结肠炎不良结局风险模型的构建与评估

Construction and evaluation of a risk model for adverse outcomes of necrotizing enterocolitis based on LASSO-Cox regression.

作者信息

Zhang HaiJin, Yang RongWei, Yao Yuan

机构信息

Department of Radiology, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang, China.

Department of Pediatrics, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang, China.

出版信息

Front Pediatr. 2024 Oct 7;12:1366913. doi: 10.3389/fped.2024.1366913. eCollection 2024.

Abstract

OBJECTIVE

This study aimed to develop a nomogram to predict adverse outcomes in neonates with necrotizing enterocolitis (NEC).

METHODS

In this retrospective study on neonates with NEC, data on perinatal characteristics, clinical features, laboratory findings, and x-ray examinations were collected for the included patients. A risk model and its nomogram were developed using the least absolute shrinkage and selection operator (LASSO) Cox regression analyses.

RESULTS

A total of 182 cases of NEC were included and divided into a training set (148 cases) and a temporal validation set (34 cases). Eight features, including weight [ = 0.471, HR = 0.99 (95% CI: 0.98-1.00)], history of congenital heart disease [ < 0.001, HR = 3.13 (95% CI:1.75-5.61)], blood transfusion before onset [ = 0.757, HR = 0.85 (95%CI:0.29-2.45)], antibiotic exposure before onset [ = 0.003, HR = 5.52 (95% CI:1.81-16.83)], C-reactive protein (CRP) at onset [ = 0.757, HR = 1.01 (95%CI:1.00-1.02)], plasma sodium at onset [ < 0.001, HR = 4.73 (95%CI:2.61-8.59)], dynamic abdominal x-ray score change [ = 0.001, HR = 4.90 (95%CI:2.69-8.93)], and antibiotic treatment regimen [ = 0.250, HR = 1.83 (0.65-5.15)], were ultimately selected for model building. The C-index for the predictive model was 0.850 (95% CI: 0.804-0.897) for the training set and 0.7880.788 (95% CI: 0.656-0.921) for the validation set. The area under the ROC curve (AUC) at 8-, 10-, and 12-days were 0.889 (95% CI: 0.822-0.956), 0.891 (95% CI: 0.829-0.953), and 0.893 (95% CI:0.832-0.954) in the training group, and 0.812 (95% CI: 0.633-0.991), 0.846 (95% CI: 0.695-0.998), and 0.798 (95%CI: 0.623-0.973) in the validation group, respectively. Calibration curves showed good concordance between the predicted and observed outcomes, and DCA demonstrated adequate clinical benefit.

CONCLUSIONS

The LASSO-Cox model effectively identifies NEC neonates at high risk of adverse outcomes across all time points. Notably, at earlier time points (such as the 8-day mark), the model also demonstrates strong predictive performance, facilitating the early prediction of adverse outcomes in infants with NEC. This early prediction can contribute to timely clinical decision-making and ultimately improve patient prognosis.

摘要

目的

本研究旨在开发一种列线图,以预测坏死性小肠结肠炎(NEC)新生儿的不良结局。

方法

在这项针对NEC新生儿的回顾性研究中,收集了纳入患者的围产期特征、临床特征、实验室检查结果和X线检查数据。使用最小绝对收缩和选择算子(LASSO)Cox回归分析建立风险模型及其列线图。

结果

共纳入182例NEC病例,分为训练集(148例)和时间验证集(34例)。最终选择8个特征用于模型构建,包括体重[β = 0.471,HR = 0.99(95%CI:0.98 - 1.00)]、先天性心脏病史[β < 0.001,HR = 3.13(95%CI:1.75 - 5.61)]、发病前输血[β = 0.757,HR = 0.85(95%CI:0.29 - 2.45)]、发病前抗生素暴露[β = 0.003,HR = 5.52(95%CI:1.81 - 16.83)]、发病时C反应蛋白(CRP)[β = 0.757,HR = 1.01(95%CI:1.00 - 1.02)]、发病时血钠[β < 0.001,HR = 4.73(95%CI:2.61 - 8.59)]、动态腹部X线评分变化[β = 0.001,HR = 4.90(95%CI:2.69 - 8.93)]和抗生素治疗方案[β = 0.250,HR = 1.83(0.65 - 5.15)]。预测模型在训练集的C指数为0.850(95%CI:0.804 - 0.897),在验证集为0.788(95%CI:0.656 - 0.921)。训练组在第8、10和12天的ROC曲线下面积(AUC)分别为0.889(95%CI:0.822 - 0.956)、0.891(95%CI:0.829 - 0.953)和0.893(95%CI:0.832 - 0.954),验证组分别为0.812(95%CI:0.633 - 0.991)、0.846(95%CI:0.695 - 0.998)和0.798(95%CI:0.623 - 0.973)。校准曲线显示预测结果与观察结果之间具有良好的一致性,决策曲线分析表明具有足够的临床益处。

结论

LASSO - Cox模型有效地识别了所有时间点上有不良结局高风险的NEC新生儿。值得注意的是,在较早的时间点(如第8天),该模型也表现出强大的预测性能,有助于早期预测NEC婴儿的不良结局。这种早期预测有助于及时进行临床决策,并最终改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/046f/11491366/51ad0c13dcfd/fped-12-1366913-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验