Hu Xuli, Xu Junchen, Gao Yunchen, Li Zhenyao, Shen Jun, Wei Wei, Hu Yangshun, Wu Yushan, Wang Yao, Ding Mingyue
School of Power and Mechanical Engineering, Wuhan University, 430072, Wuhan, China.
The Institute of Technological Sciences, Wuhan University, 430072, Wuhan, China.
Angew Chem Int Ed Engl. 2025 Jan 10;64(2):e202414416. doi: 10.1002/anie.202414416. Epub 2024 Nov 16.
Exploring an appropriate support material for Cu-based electrocatalyst is conducive for stably producing multi-carbon chemicals from electroreduction of carbon monoxide. However, the insufficient metal-support adaptability and low conductivity of the support would hinder the C-C coupling capacity and energy efficiency. Herein, non-stoichiometric TiO was incorporated into Cu electrocatalysts (Cu-TiO), and served as a highly conductive and stable support for highly energy-efficient electrochemical conversion of CO. The abundant oxygen vacancies originated from ordered lattice defects in TiO facilitate the water dissociation and the CO adsorption to accelerate the hydrogenation to *COH. The highly adaptable metal-support interface of Cu-TiO enables a direct asymmetrical C-C coupling between *CO on Cu and *COH on TiO, which significantly lowers the reaction energy barrier for C products formation. Additionally, the excellent electroconductivity of TiO benefits the reaction charge transfer through robust Cu/TiO interface for minimizing the energy loss. Thus, the optimized 20Cu-TiO catalyst exhibits an impressive selectivity of 96.4 % and ultrahigh energy efficiency of 45.1 % for multi-carbon products, along with a remarkable partial current density of 432.6 mA cm. Our study underscores a novel C-C coupling strategy between Cu and the support material, advancing the development of Cu-supported catalysts for highly efficient electroreduction of carbon monoxide.
探索一种适合铜基电催化剂的载体材料,有利于通过一氧化碳的电还原稳定地生产多碳化学品。然而,载体的金属-载体适应性不足和低导电性会阻碍碳-碳偶联能力和能源效率。在此,将非化学计量比的TiO引入铜电催化剂(Cu-TiO)中,并作为一种高导电性和稳定性的载体,用于一氧化碳的高能效电化学转化。TiO中由有序晶格缺陷产生的大量氧空位促进了水的解离和一氧化碳的吸附,从而加速了氢化生成COH。Cu-TiO高度适配的金属-载体界面使得铜上的CO与TiO上的*COH之间能够直接进行不对称碳-碳偶联,这显著降低了形成碳产物的反应能垒。此外,TiO优异的导电性有利于通过稳健的Cu/TiO界面进行反应电荷转移,从而将能量损失降至最低。因此,优化后的20Cu-TiO催化剂对多碳产物表现出令人印象深刻的96.4%的选择性和45.1%的超高能源效率,以及432.6 mA cm的显著分电流密度。我们的研究强调了一种铜与载体材料之间新的碳-碳偶联策略,推动了用于高效电还原一氧化碳的铜负载催化剂的发展。