Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, D.C. 20010.
Department of Neurology & Rehabilitation Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C. 20037.
Proc Natl Acad Sci U S A. 2024 Oct 29;121(44):e2403015121. doi: 10.1073/pnas.2403015121. Epub 2024 Oct 22.
The hippocampus is functionally specialized along its longitudinal axis with intricate interactions with cortical systems, which is crucial for understanding development and cognition. Using a well-established connectopic mapping technique on two large resting-state functional MRI datasets, we systematically quantified topographic organization of the hippocampal functional connectivity (hippocampal gradient) and its cortical interaction in developing brains. We revealed hippocampal functional hierarchy within the large-scale cortical brain systems, with the anterior hippocampus preferentially connected to an anterior temporal (AT) pathway and the posterior hippocampus embedded in a posterior medial (PM) pathway. We examined the developmental effects of the primary gradient and its whole-brain functional interaction. We observed increased functional specialization along the hippocampal long axis and found a general whole-brain connectivity shift from the posterior to the anterior hippocampus during development. Using phenotypic predictive modeling, we further delineated how the hippocampus is differentially integrated into the whole-brain cortical hierarchy underlying episodic memory and identified several key nodes within PM/AT systems. Our results highlight the importance of hippocampal gradient and its cortical interaction in development and for supporting episodic memory.
海马体沿其长轴在功能上具有特异性,与皮质系统有着错综复杂的相互作用,这对于理解其发育和认知至关重要。我们使用两种大型静息态功能磁共振成像数据集上成熟的连接图映射技术,系统地量化了发育中大脑中海马体功能连接(海马梯度)及其皮质相互作用的地形组织。我们揭示了在大型皮质脑系统内海马体的功能层次结构,其中前海马体优先与前颞(AT)通路连接,而后海马体嵌入后内侧(PM)通路。我们研究了主要梯度及其全脑功能相互作用的发育效应。我们观察到随着海马体长轴的延长,功能专业化程度增加,并且在发育过程中,全脑连接从后海马体向前海马体转移。通过表型预测建模,我们进一步描述了海马体如何在以情节记忆为基础的全脑皮质层次结构中得到不同程度的整合,并确定了 PM/AT 系统中的几个关键节点。我们的研究结果强调了海马梯度及其皮质相互作用在发育和支持情节记忆中的重要性。