Suppr超能文献

通过团队合作提高生物信息学软件质量。

Improving bioinformatics software quality through teamwork.

机构信息

Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo 0318, Norway.

Department of Medical Genetics, Institute of Clinical Medicine, Oslo University Hospital and University of Oslo, Oslo 0450, Norway.

出版信息

Bioinformatics. 2024 Nov 1;40(11). doi: 10.1093/bioinformatics/btae632.

Abstract

SUMMARY

Since high-throughput techniques became a staple in biological science laboratories, computational algorithms, and scientific software have boomed. However, the development of bioinformatics software usually lacks software development quality standards. The resulting software code is hard to test, reuse, and maintain. We believe that the root of inefficiency in implementing the best software development practices in academic settings is the individualistic approach, which has traditionally been the norm for recognizing scientific achievements and, by extension, for developing specialized software. Software development is a collective effort in most software-heavy endeavors. Indeed, the literature suggests teamwork directly impacts code quality through knowledge sharing, collective software development, and established coding standards. In our computational biology research groups, we sustainably involve all group members in learning, sharing, and discussing software development while maintaining the personal ownership of research projects and related software products. We found that group members involved in this endeavor improved their coding skills, became more efficient bioinformaticians, and obtained detailed knowledge about their peers' work, triggering new collaborative projects. We strongly advocate for improving software development culture within bioinformatics through collective effort in computational biology groups or institutes with three or more bioinformaticians.

AVAILABILITY AND IMPLEMENTATION

Additional information and guidance on how to get started is available at https://ferenckata.github.io/ImprovingSoftwareTogether.github.io/.

摘要

摘要

自从高通量技术成为生物科学实验室的主要手段以来,计算算法和科学软件蓬勃发展。然而,生物信息学软件的开发通常缺乏软件开发质量标准。由此产生的软件代码难以测试、重用和维护。我们认为,在学术环境中实施最佳软件开发实践效率低下的根源是个人主义方法,这种方法传统上是承认科学成就的规范,进而开发专门软件的规范。在大多数软件密集型工作中,软件开发是一项集体努力。事实上,文献表明,通过知识共享、集体软件开发和既定的编码标准,团队合作直接影响代码质量。在我们的计算生物学研究小组中,我们持续让所有小组成员参与学习、分享和讨论软件开发,同时保持研究项目和相关软件产品的个人所有权。我们发现,参与这一工作的小组成员提高了他们的编码技能,成为更高效的生物信息学家,并获得了关于其同事工作的详细知识,从而引发了新的合作项目。我们强烈主张通过具有三个或更多生物信息学家的计算生物学小组或机构的集体努力,在生物信息学中改善软件开发文化。

可用性和实施

有关如何入门的更多信息和指导可在 https://ferenckata.github.io/ImprovingSoftwareTogether.github.io/ 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4f5/11537420/351da54bec61/btae632f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验