Suppr超能文献

利用常规代谢参数预测反流性食管炎的列线图:一项回顾性研究

Nomogram for predicting reflux esophagitis with routine metabolic parameters: a retrospective study.

作者信息

He Tao, Sun Xiaoyu, Duan Zhijun

机构信息

The First Affiliated Hospital of Dalian Medical University, Dalian, China.

Dalian Central Laboratory of Integrative Neuro-gastrointestinal Dynamics and Metabolism Related Diseases Prevention and Treatment, Dalian, China.

出版信息

Arch Med Sci. 2024 Apr 30;20(4):1089-1100. doi: 10.5114/aoms/175536. eCollection 2024.

Abstract

INTRODUCTION

The prevalence of reflux esophagitis (RE) is relatively high around the world. We investigated routine metabolic parameters for associations with RE prevalence and severity, creating a user-friendly RE prediction nomogram.

MATERIAL AND METHODS

We included 10,881 individuals who had upper gastrointestinal endoscopy at a hospital. We employed univariate and multivariate logistic regression for independent risk factors related to RE prevalence, and conducted ordinal logistic regression for independent prognostic factors of RE severity. Subsequently, a nomogram was constructed using multivariate logistic regression analysis, and its performance was assessed through the utilization of receiver operating characteristic (ROC) curves, calibration curves, decision curve analysis (DCA), and clinical impact curve (CIC) analysis.

RESULTS

In this study, 43.8% (4769 individuals) had confirmed RE. Multivariate analysis identified BMI, age, alcohol use, diabetes, , systolic blood pressure (SBP), diastolic blood pressure (DBP), glucose, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), total cholesterol (TC), albumin, uric acid (UA), fT3, and fT4 as independent RE risk factors ( < 0.05). The personalized nomogram used 17 factors to predict RE, with an AUC of 0.921 (95% CI: 0.916-0.926), specificity 84.02%, sensitivity 84.86%, and accuracy 84.39%, reflecting excellent discrimination. Calibration, decision, and CIC analyses affirmed the model's high predictive accuracy and clinical utility. Additionally, ordinal logistic regression linked hypertension, diabetes, HDL-C, LDL-C, TG, and TC to RE severity.

CONCLUSIONS

Our study highlights the association between the routine metabolic parameters and RE prevalence and severity. The nomogram may be of great value for the prediction of RE prevalence.

摘要

引言

反流性食管炎(RE)在全球的患病率相对较高。我们调查了常规代谢参数与RE患病率和严重程度的关联,创建了一个便于用户使用的RE预测列线图。

材料与方法

我们纳入了一家医院接受上消化道内镜检查的10881名个体。我们对与RE患病率相关的独立危险因素采用单因素和多因素逻辑回归分析,并对RE严重程度的独立预后因素进行有序逻辑回归分析。随后,使用多因素逻辑回归分析构建列线图,并通过绘制受试者工作特征(ROC)曲线、校准曲线、决策曲线分析(DCA)和临床影响曲线(CIC)分析来评估其性能。

结果

在本研究中,43.8%(4769名个体)确诊为RE。多因素分析确定体重指数、年龄、饮酒、糖尿病、收缩压(SBP)、舒张压(DBP)、血糖、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)、甘油三酯(TG)、总胆固醇(TC)、白蛋白、尿酸(UA)、游离三碘甲状腺原氨酸(fT3)和游离甲状腺素(fT4)为RE的独立危险因素(<0.05)。个性化列线图使用17个因素预测RE,曲线下面积(AUC)为0.921(95%CI:0.916 - 0.926),特异性84.02%,敏感性84.86%,准确性84.39%,显示出良好的区分度。校准、决策和CIC分析证实了该模型具有较高的预测准确性和临床实用性。此外,有序逻辑回归将高血压、糖尿病、HDL-C、LDL-C、TG和TC与RE严重程度相关联。

结论

我们的研究突出了常规代谢参数与RE患病率和严重程度之间的关联。该列线图对预测RE患病率可能具有重要价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebec/11493045/5c852b7b04bf/AMS-20-4-175536-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验