Yue Chongkang, Xue Huiping
Department of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Front Oncol. 2024 Oct 8;14:1399970. doi: 10.3389/fonc.2024.1399970. eCollection 2024.
Gastric cancer, a pervasive malignancy globally, often presents with regional lymph node metastasis (LNM), profoundly impacting prognosis and treatment options. Existing clinical methods for determining the presence of LNM are not precise enough, necessitating the development of an accurate risk prediction model.
Our primary objective was to employ machine learning algorithms to identify risk factors for LNM and establish a precise prediction model for stage II-III gastric cancer.
A study was conducted at Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine between May 2010 and December 2022. This retrospective study analyzed 1147 surgeries for gastric cancer and explored the clinicopathological differences between LNM and non-LNM cohorts. Utilizing univariate logistic regression and two machine learning methodologies-Least absolute shrinkage and selection operator (LASSO) and random forest (RF)-we identified vascular invasion, maximum tumor diameter, percentage of monocytes, hematocrit (HCT), and lymphocyte-monocyte ratio (LMR) as salient factors and consolidated them into a nomogram model. The area under the receiver operating characteristic (ROC) curve (AUC), calibration curves, and decision curves were used to evaluate the test efficacy of the nomogram. Shapley Additive Explanation (SHAP) values were utilized to illustrate the predictive impact of each feature on the model's output.
Significant differences in tumor characteristics were discerned between LNM and non-LNM cohorts through appropriate statistical methods. A nomogram, incorporating vascular invasion, maximum tumor diameter, percentage of monocytes, HCT, and LMR, was developed and exhibited satisfactory predictive capabilities with an AUC of 0.787 (95% CI: 0.749-0.824) in the training set and 0.753 (95% CI: 0.694-0.812) in the validation set. Calibration curves and decision curves affirmed the nomogram's predictive accuracy.
In conclusion, leveraging machine learning algorithms, we devised a nomogram for precise LNM risk prognostication in stage II-III gastric cancer, offering a valuable tool for tailored risk assessment in clinical decision-making.
胃癌是一种在全球范围内普遍存在的恶性肿瘤,常伴有区域淋巴结转移(LNM),对预后和治疗选择有深远影响。现有的确定LNM存在的临床方法不够精确,因此需要开发一种准确的风险预测模型。
我们的主要目的是使用机器学习算法来识别LNM的风险因素,并为II-III期胃癌建立精确的预测模型。
在2010年5月至2022年12月期间于上海交通大学医学院附属仁济医院进行了一项研究。这项回顾性研究分析了1147例胃癌手术,并探讨了LNM组和非LNM组之间的临床病理差异。利用单因素逻辑回归以及两种机器学习方法——最小绝对收缩和选择算子(LASSO)和随机森林(RF),我们确定血管侵犯、最大肿瘤直径、单核细胞百分比、血细胞比容(HCT)和淋巴细胞-单核细胞比值(LMR)为显著因素,并将它们整合到一个列线图模型中。使用受试者操作特征(ROC)曲线下面积(AUC)、校准曲线和决策曲线来评估列线图的测试效能。利用Shapley值相加解释(SHAP)值来说明每个特征对模型输出的预测影响。
通过适当的统计方法,在LNM组和非LNM组之间发现了肿瘤特征的显著差异。开发了一个包含血管侵犯、最大肿瘤直径、单核细胞百分比、HCT和LMR的列线图,其在训练集中的AUC为0.787(95%CI:0.749-0.824),在验证集中的AUC为0.753(95%CI:0.694-0.812),显示出令人满意的预测能力。校准曲线和决策曲线证实了列线图的预测准确性。
总之,利用机器学习算法,我们设计了一个用于精确预测II-III期胃癌LNM风险的列线图,为临床决策中的个性化风险评估提供了一个有价值的工具。