Li Qian, Yan Shangcheng, Yang Weiran, Du Zhuan, Cheng Ming, Chen Renwei, Shao Qiankun, Tian Yuan, Sheng Mengchao, Peng Wei, Wu Yongyou
Department of Gastrointestinal Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
BMJ Open. 2025 Mar 25;15(3):e098476. doi: 10.1136/bmjopen-2024-098476.
To develop and validate machine learning (ML)-based models to predict lymph node metastasis (LNM) in patients with gastric cancer (GC).
Retrospective cohort study.
Second Affiliated Hospital of Soochow University.
A total of 500 inpatients from the Second Affiliated Hospital of Soochow University, collected retrospectively between 1 April 2018 and 31 March 2023, were used as the training set, while 824 Asian patients from the Surveillance, Epidemiology and End Results database comprised the external validation set.
Prediction models were developed using multiple ML algorithms, including logistic regression, support vector machine, k-nearest neighbours, naive Bayes, decision tree (DT), gradient boosting DT, random forest and artificial neural network (ANN). The predictive value of these models was validated and evaluated through receiver operating characteristic curves, precision-recall (PR) curves, calibration curves, decision curve analysis and accuracy metrics.
Among the ML algorithms, the ANN outperformed others, achieving the highest accuracy (0.722; 95% CI: 0.692 to 0.751), precision (0.732; 95% CI: 0.694 to 0.776), F1 score (0.733; 95% CI: 0.695 to 0.773), specificity (0.728; 95% CI: 0.684 to 0.770) and area under the PR curve (0.781; 95% CI: 0.740 to 0.821) in the external validation results. Moreover, it demonstrated superior calibration and clinical utility. Shapley Additive Explanations analysis identified the depth of invasion, tumour size and Lauren classification as the most influential predictors of LNM in patients with GC. Furthermore, a user-friendly web application was developed to provide individual prediction results.
This study introduces an accurate, reliable and clinically applicable approach for predicting the risk of LNM in patients with GC. The model demonstrates its potential to enhance the personalised management of GC in diverse populations, supported by external validation and an accessible web application for practical use.
开发并验证基于机器学习(ML)的模型,以预测胃癌(GC)患者的淋巴结转移(LNM)情况。
回顾性队列研究。
苏州大学附属第二医院。
苏州大学附属第二医院的500名住院患者,于2018年4月1日至2023年3月31日期间进行回顾性收集,用作训练集,而监测、流行病学和最终结果数据库中的824名亚洲患者组成外部验证集。
使用多种ML算法开发预测模型,包括逻辑回归、支持向量机、k近邻、朴素贝叶斯、决策树(DT)、梯度提升DT、随机森林和人工神经网络(ANN)。通过受试者工作特征曲线、精确召回率(PR)曲线、校准曲线、决策曲线分析和准确性指标对这些模型的预测价值进行验证和评估。
在ML算法中,ANN表现优于其他算法,在外部验证结果中达到最高准确率(0.722;95%CI:0.692至0.751)、精确率(0.732;95%CI:0.694至0.776)、F1分数(0.733;95%CI:0.695至0.773)、特异性(0.728;95%CI:0.684至0.770)和PR曲线下面积(0.781;95%CI:0.740至0.821)。此外,它还表现出卓越的校准和临床实用性。Shapley加性解释分析确定浸润深度、肿瘤大小和Lauren分类是GC患者LNM最具影响力的预测因素。此外,还开发了一个用户友好的网络应用程序以提供个体预测结果。
本研究引入了一种准确、可靠且临床适用的方法来预测GC患者的LNM风险。该模型在外部验证和便于实际使用的网络应用程序的支持下,显示出其在不同人群中加强GC个性化管理的潜力。