Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing 400014, China.
Technol Cancer Res Treat. 2024 Jan-Dec;23:15330338241290386. doi: 10.1177/15330338241290386.
To predict bone marrow metastasis in neuroblastoma using contrast-enhanced computed tomography (CECT) radiomics features and explainable machine learning.
This cohort study retrospectively included a total of 345 neuroblastoma patients who underwent testing for bone marrow metastatic status. Tumor lesions on CECT images were delineated by two radiologists, and 1409 radiomics features were extracted. Correlation analysis, Least Absolute Shrinkage and Selection Operator regression, and one-way analysis of variance were used to identify radiomics features associated with bone marrow metastasis. A predictive model for bone marrow metastasis was then developed using the support vector machine algorithm based on the selected radiomics features. The performance of the radiomics model was evaluated using the area under the curve (AUC), 95% confidence interval (CI), accuracy, sensitivity, and specificity.
The radiomics model included 16 features, with a predominant focus on texture features (12/16, 75%). In the training set, the model demonstrated an AUC of 0.891 (95% CI: 0.848-0.933), an accuracy of 0.831 (95% CI: 0.829-0.832), a sensitivity of 0.893 (95% CI: 0.840-0.946), and a specificity of 0.757 (95% CI: 0.677-0.837). In the test set, the AUC, accuracy, sensitivity, and specificity were 0.807 (95% CI: 0.720-0.893), 0.767 (95% CI: 0.764-0.770), 0.696 (95% CI: 0.576-0.817), and 0.851 (95% CI: 0.749-0.953), respectively.
Radiomics features extracted from CECT images are associated with the presence of bone marrow metastasis in neuroblastoma, providing potential new imaging biomarkers for predicting bone marrow metastasis in this disease.
利用增强 CT(CECT)影像组学特征和可解释机器学习预测神经母细胞瘤骨髓转移。
本队列研究回顾性纳入了 345 名接受骨髓转移状态检测的神经母细胞瘤患者。由两位放射科医生勾画 CECT 图像上的肿瘤病灶,提取了 1409 个影像组学特征。采用相关性分析、最小绝对值收缩和选择算子回归以及单因素方差分析,筛选与骨髓转移相关的影像组学特征。然后基于选定的影像组学特征,采用支持向量机算法建立骨髓转移的预测模型。采用曲线下面积(AUC)、95%置信区间(CI)、准确率、敏感度和特异度评估影像组学模型的性能。
该影像组学模型包含 16 个特征,其中以纹理特征为主(12/16,75%)。在训练集中,该模型的 AUC 为 0.891(95%CI:0.848-0.933),准确率为 0.831(95%CI:0.829-0.832),敏感度为 0.893(95%CI:0.840-0.946),特异度为 0.757(95%CI:0.677-0.837)。在测试集中,AUC、准确率、敏感度和特异度分别为 0.807(95%CI:0.720-0.893)、0.767(95%CI:0.764-0.770)、0.696(95%CI:0.576-0.817)和 0.851(95%CI:0.749-0.953)。
从 CECT 图像中提取的影像组学特征与神经母细胞瘤骨髓转移的存在相关,为预测该病骨髓转移提供了潜在的新影像学生物标志物。