Suppr超能文献

基于预后营养指数的机器学习模型预测 HCC 患者消融治疗后的长期预后。

Machine Learning Model Based on Prognostic Nutritional Index for Predicting Long-Term Outcomes in Patients With HCC Undergoing Ablation.

机构信息

Division of Interventional Ultrasound, Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.

Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.

出版信息

Cancer Med. 2024 Oct;13(20):e70344. doi: 10.1002/cam4.70344.

Abstract

AIMS

To develop multiple machine learning (ML) models based on the prognostic nutritional index (PNI) and determine the optimal model for predicting long-term survival outcomes in hepatocellular carcinoma (HCC) patients after local ablation.

METHODS

From January 2009 to December 2019, we analyzed data from 848 primary HCC patients who underwent local ablation. ML models were constructed and evaluated using the concordance index (C-index), concordance-discordance area under curve (C/D AUC), and Brier scores. The optimal ML model was interpreted using the partial dependence plot (PDP) and SHapley Additive exPlanations (SHAP) framework. Additionally, the prognostic performance of our model was compared with other models.

RESULTS

Alkaline phosphatase, preoperation alpha-fetoprotein level, PNI, tumor number, and tumor size were identified as independent prognostic factors for ML model construction. Among the 19 ML algorithms tested, the Aorsf model showed superior performance in both the training cohort (C/D AUC: 0.733; C-index: 0.736; Brier score: 0.133) and validation cohort (C/D AUC: 0.713; C-index: 0.793; Brier score: 0.117). The time-dependent AUC of the Aorsf model for predicting overall survival was as follows: 1-, 3-, 5-, 7-, and 9-year were 0.828, 0.765, 0.781, 0.817, and 0.812 in the training cohort, 0.846, 0.859, 0.824, 0.845, and 0.874 in the validation cohort, respectively. The PDP and SHAP algorithms were employed for visual interpretation. Furthermore, time-AUC and decision curve analysis demonstrated that the Aorsf model provided superior clinical benefits compared to other models.

CONCLUSION

The PNI-based Aorsf model effectively predicts long-term survival outcomes after ablation therapy, making a significant contribution to HCC research by improving surveillance, prevention, and treatment strategies.

摘要

目的

基于预后营养指数(PNI)开发多种机器学习(ML)模型,并确定预测局部消融治疗后肝细胞癌(HCC)患者长期生存结局的最佳模型。

方法

2009 年 1 月至 2019 年 12 月,我们分析了 848 例接受局部消融治疗的原发性 HCC 患者的数据。使用一致性指数(C 指数)、一致性差异曲线下面积(C/D AUC)和 Brier 评分构建和评估 ML 模型。使用部分依赖图(PDP)和 SHapley Additive exPlanations(SHAP)框架解释最佳 ML 模型。此外,还比较了我们模型的预后性能与其他模型。

结果

碱性磷酸酶、术前甲胎蛋白水平、PNI、肿瘤数量和肿瘤大小被确定为构建 ML 模型的独立预后因素。在测试的 19 种 ML 算法中,Aorsf 模型在训练队列(C/D AUC:0.733;C 指数:0.736;Brier 得分:0.133)和验证队列(C/D AUC:0.713;C 指数:0.793;Brier 得分:0.117)中均表现出优异的性能。Aorsf 模型预测总生存时间的时间依赖性 AUC 如下:训练队列中 1、3、5、7 和 9 年分别为 0.828、0.765、0.781、0.817 和 0.812,验证队列中分别为 0.846、0.859、0.824、0.845 和 0.874。使用 PDP 和 SHAP 算法进行可视化解释。此外,时间-AUC 和决策曲线分析表明,Aorsf 模型与其他模型相比提供了更好的临床获益。

结论

基于 PNI 的 Aorsf 模型可有效预测消融治疗后 HCC 患者的长期生存结局,通过改善监测、预防和治疗策略,为 HCC 研究做出了重要贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b124/11496905/5dc290559c80/CAM4-13-e70344-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验