Vorndran Jörg, Blümcke Ingmar
Department of Neuropathology, University Hospital Erlangen, member of EpiCare European Reference Network, Erlangen, Germany.
Epilepsia. 2024 Dec;65(12):3501-3512. doi: 10.1111/epi.18161. Epub 2024 Oct 23.
Recently, we developed a first artificial intelligence (AI)-based digital pathology classifier for focal cortical dysplasia (FCD) as defined by the ILAE classification. Herein, we tested the usefulness of the classifier in a retrospective histopathology workup scenario.
Eighty-six new cases with histopathologically confirmed FCD ILAE type Ia (FCDIa), FCDIIa, FCDIIb, mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE), or mild malformations of cortical development were selected, 20 of which had confirmed gene mosaicism.
The classifier always recognized the correct histopathology diagnosis in four or more 1000 × 1000-μm digital tiles in all cases. Furthermore, the final diagnosis overlapped with the largest batch of tiles assigned by the algorithm to one diagnostic entity in 80.2% of all cases. However, 86.2% of all cases revealed more than one diagnostic category. As an example, FCDIIb was identified in all of the 23 patients with histopathologically assigned FCDIIb, whereas the classifier correctly recognized FCDIIa tiles in 19 of these cases (83%), that is, dysmorphic neurons but no balloon cells. In contrast, the classifier misdiagnosed FCDIIb tiles in seven of 23 cases histopathologically assigned to FCDIIa (33%). This mandates a second look by the signing histopathologist to either confirm balloon cells or differentiate from reactive astrocytes. The algorithm also recognized coexisting architectural dysplasia, for example, vertically oriented microcolumns as in FCDIa, in 22% of cases classified as FCDII and in 62% of cases with MOGHE. Microscopic review confirmed microcolumns in the majority of tiles, suggesting that vertically oriented architectural abnormalities are more common than previously anticipated.
An AI-based diagnostic classifier will become a helpful tool in our future histopathology laboratory, in particular when large anatomical resections from epilepsy surgery require extensive resources. We also provide an open access web application allowing the histopathologist to virtually review digital tiles obtained from epilepsy surgery to corroborate their final diagnosis.
最近,我们开发了首个基于人工智能(AI)的数字病理学分类器,用于诊断国际抗癫痫联盟(ILAE)分类所定义的局灶性皮质发育不良(FCD)。在此,我们在回顾性组织病理学检查场景中测试了该分类器的实用性。
选择了86例经组织病理学确诊为ILAE Ia型FCD(FCDIa)、FCDIIa、FCDIIb、癫痫伴少突胶质细胞增生的轻度皮质发育畸形(MOGHE)或轻度皮质发育畸形的新病例,其中20例已证实存在基因镶嵌现象。
在所有病例中,分类器在四个或更多1000×1000μm的数字切片中总能识别出正确的组织病理学诊断。此外,在80.2%的病例中,最终诊断与算法分配给一个诊断实体的最大一批切片结果一致。然而,86.2%的病例显示不止一种诊断类别。例如,在组织病理学诊断为FCDIIb的所有23例患者中均发现了FCDIIb,而分类器在其中19例(83%)中正确识别出了FCDIIa切片,即异形神经元但无气球样细胞。相比之下,在组织病理学诊断为FCDIIa的23例病例中,分类器将其中7例误诊为FCDIIb切片(33%)。这就要求签署报告的组织病理学家再次查看,以确认是否存在气球样细胞或与反应性星形胶质细胞进行鉴别。该算法还识别出了共存的结构发育异常,例如,在分类为FCDII的病例中有22%以及在MOGHE病例中有62%存在如FCDIa中所见的垂直排列的微柱。显微镜检查在大多数切片中证实了微柱的存在,这表明垂直排列的结构异常比之前预期的更为常见。
基于人工智能的诊断分类器将成为我们未来组织病理学实验室的一个有用工具,特别是当癫痫手术中的大型解剖切除需要大量资源时。我们还提供了一个开放获取的网络应用程序,使组织病理学家能够虚拟查看从癫痫手术中获取的数字切片,以证实他们的最终诊断。