Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, USA.
Department of Surgery, University of Miami, Miller School of Medicine, Miami, USA.
Gut Microbes. 2024 Jan-Dec;16(1):2417729. doi: 10.1080/19490976.2024.2417729. Epub 2024 Oct 23.
IgA binding dictates the composition of the intestinal microbiome and reflects dysbiotic states during chronic disease. Both pathogenic and commensal bacteria differentially bind to IgA with varying outcomes. Little is known regarding IgA dynamics immediately following microbial dysbiosis. Recent work shows that morphine treatment rapidly induces microbial dysbiosis within hours of administration. This microbial shift is characterized by the expansion of pathogenic bacteria with a concurrent decrease in commensal bacteria. Because of this rapid microbial shift, a murine model of chronic morphine treatment was used to gain insight on the host IgA response during early microbial disruption. Within 24 h, morphine treatment induces microbial dysbiosis which disrupts IgA-bacterial homeostasis, resulting in an increased concentration of unbound IgA with a corresponding decrease in the frequency of IgA-bound bacteria. Additionally, the increased concentration of unbound IgA is dependent on the microbiome, as microbial depletion abolishes the increase. At 48 h of morphine treatment, the frequency of IgA-bound bacteria increases and IgA-seq reveals increased IgA targeting of gram-positive bacteria. Both a whole-body TLR2 KO and treatment with the TLR inhibitor OxPAPC resulted in abrogation of IgA binding to bacteria, implicating modulation of IgA binding through TLR signaling. Finally, we identify that a sub-population of IgA B cells in the intestinal lamina propria has increased CD11b and TLR2 expression at 24 h of morphine treatment which could be a potential source of the observed IgA that targets gram-positive bacteria. Together, we demonstrate for the first time the role of TLR2 in IgA targeting of intestinal bacteria, and this study sheds light on the IgA dynamics during the initial hours of microbial dysbiosis.
IgA 结合决定了肠道微生物组的组成,并反映了慢性疾病期间的生态失调状态。致病性和共生菌都以不同的结果与 IgA 结合。对于微生物失调后立即发生的 IgA 动态变化,人们知之甚少。最近的研究表明,吗啡治疗在给药后数小时内迅速导致微生物失调。这种微生物变化的特征是致病性细菌的扩张,同时共生菌减少。由于这种快速的微生物变化,使用慢性吗啡治疗的小鼠模型来深入了解宿主 IgA 对早期微生物破坏的反应。在 24 小时内,吗啡治疗会导致微生物失调,破坏 IgA-细菌的动态平衡,导致未结合 IgA 的浓度增加,同时结合 IgA 的细菌频率降低。此外,未结合 IgA 的浓度增加依赖于微生物组,因为微生物耗竭会消除增加。在吗啡治疗 48 小时时,结合 IgA 的细菌频率增加,IgA-seq 显示 IgA 对革兰氏阳性菌的靶向增加。全身 TLR2 KO 和 TLR 抑制剂 OxPAPC 的治疗都导致 IgA 与细菌结合的减少,这表明 TLR 信号通过调节 IgA 结合。最后,我们发现吗啡治疗 24 小时后,肠道固有层中的 IgA B 细胞亚群的 CD11b 和 TLR2 表达增加,这可能是观察到的针对革兰氏阳性菌的 IgA 的潜在来源。总之,我们首次证明了 TLR2 在 IgA 靶向肠道细菌中的作用,这项研究阐明了微生物失调最初几小时内 IgA 的动态变化。