Suppr超能文献

解析继发性免疫缺陷:B 细胞淋巴增殖性疾病中的原发性免疫缺陷的鉴定。

Dissecting Secondary Immunodeficiency: Identification of Primary Immunodeficiency within B-Cell Lymphoproliferative Disorders.

机构信息

Department of Clinical Immunology, Institute of Laboratory Medicine and IdISSC, Hospital Clínico San Carlos, Madrid, Spain.

Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain.

出版信息

J Clin Immunol. 2024 Oct 23;45(1):32. doi: 10.1007/s10875-024-01818-2.

Abstract

Distinguishing between primary (PID) and secondary (SID) immunodeficiencies, particularly in relation to hematological B-cell lymphoproliferative disorders (B-CLPD), poses a major clinical challenge. We aimed to analyze and define the clinical and laboratory variables in SID patients associated with B-CLPD, identifying overlaps with late-onset PIDs, which could potentially improve diagnostic precision and prognostic assessment. We studied 37 clinical/laboratory variables in 151 SID patients with B-CLPD. Patients were classified as "Suspected PID Group" when having recurrent-severe infections prior to the B-CLPD and/or hypogammaglobulinemia according to key ESID criteria for PID. Bivariate association analyses showed significant statistical differences between "Suspected PID"- and "SID"-groups in 10 out of 37 variables analyzed, with "Suspected PID" showing higher frequencies of childhood recurrent-severe infections, family history of B-CLPD, significantly lower serum Free Light Chain (sFLC), immunoglobulin concentrations, lower total leukocyte, and switch-memory B-cell counts at baseline. Rpart machine learning algorithm was performed to potentially create a model to differentiate both groups. The model developed a decision tree with two major variables in order of relevance: sum κ + λ and history of severe-recurrent infections in childhood, with high sensitivity 89.5%, specificity 100%, and accuracy 91.8% for PID prediction. Identifying significant clinical and immunological variables can aid in the difficult task of recognizing late-onset PIDs among SID patients, emphasizing the value of a comprehensive immunological evaluation. The differences between "Suspected PID" and SID groups, highlight the need of early, tailored diagnostic and treatment strategies for personalized patient management and follow up.

摘要

区分原发性(PID)和继发性(SID)免疫缺陷,特别是与血液学 B 细胞淋巴增殖性疾病(B-CLPD)相关,是一项重大的临床挑战。我们旨在分析和定义 SID 患者与 B-CLPD 相关的临床和实验室变量,确定与迟发性 PID 的重叠,这可能有助于提高诊断精度和预后评估。我们研究了 151 例 SID 患者伴 B-CLPD 的 37 项临床/实验室变量。当患者在 B-CLPD 之前有复发性严重感染和/或根据 PID 的关键 ESID 标准存在低丙种球蛋白血症时,将其归类为“疑似 PID 组”。二变量关联分析显示,在分析的 37 个变量中有 10 个在“疑似 PID”和“SID”组之间存在显著的统计学差异,“疑似 PID”组的儿童复发性严重感染、B-CLPD 家族史、显著较低的血清游离轻链(sFLC)、免疫球蛋白浓度、较低的总白细胞和初始记忆 B 细胞计数的频率更高。Rpart 机器学习算法用于潜在地创建一个模型来区分这两组。该模型开发了一个决策树,其中两个主要变量按相关性排序:总和 κ + λ 和儿童期严重复发性感染史,对 PID 的预测具有高敏感性 89.5%、特异性 100%和准确性 91.8%。确定重要的临床和免疫学变量可以帮助识别 SID 患者中的迟发性 PID,强调全面免疫评估的价值。“疑似 PID”和 SID 组之间的差异突出了为个体化患者管理和随访制定早期、定制的诊断和治疗策略的必要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验