Gabrielli Alexander P, Novikova Lesya, Ranjan Amol, Wang Xiaowan, Ernst Nicholas J, Abeykoon Dhanushki, Roberts Anysja, Kopp Annie, Mansel Clayton, Qiao Linlan, Lysaker Colton R, Wiedling Ian W, Wilkins Heather M, Swerdlow Russell H
University of Kansas Alzheimer's Disease Research Center, Kansas City, Kansas, USA.
Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA.
Alzheimers Dement. 2024 Dec;20(12):8429-8443. doi: 10.1002/alz.14275. Epub 2024 Oct 23.
Alzheimer's disease (AD) features changes in mitochondrial structure and function. Investigators debate where to position mitochondrial pathology within the chronology and context of other AD features.
To address whether mitochondrial dysfunction alters AD-implicated genes and proteins, we treated SH-SY5Y cells and induced pluripotent stem cell (iPSC)-derived neurons with chloramphenicol, an antibiotic that inhibits mtDNA-generated transcript translation. We characterized adaptive, AD-associated gene, and AD-associated protein responses.
SH-SY5Y cells and iPSC neurons responded to mtDNA transcript translation inhibition by increasing mtDNA copy number and transcription. Nuclear-expressed respiratory chain mRNA and protein levels also changed. There were AD-consistent concordant and model-specific changes in amyloid precursor protein, beta amyloid, apolipoprotein E, tau, and α-synuclein biology.
Primary mitochondrial dysfunction induces compensatory organelle responses, changes nuclear gene expression, and alters the biology of AD-associated genes and proteins in ways that may recapitulate brain aging and AD molecular phenomena.
In AD, mitochondrial dysfunction could represent a disease cause or consequence. We inhibited mitochondrial translation in human neuronal cells and neurons. Mitochondrial and nuclear gene expression shifted in adaptive-consistent patterns. APP, Aβ, APOE, tau, and α-synuclein biology changed in AD-consistent patterns. Mitochondrial stress creates an environment that promotes AD pathology.
阿尔茨海默病(AD)的特征是线粒体结构和功能发生变化。研究人员对于线粒体病理学在其他AD特征的时间顺序和背景中的定位存在争议。
为了探究线粒体功能障碍是否会改变与AD相关的基因和蛋白质,我们用氯霉素处理了SH-SY5Y细胞和诱导多能干细胞(iPSC)衍生的神经元,氯霉素是一种抑制线粒体DNA转录本翻译的抗生素。我们对适应性反应、与AD相关的基因和与AD相关的蛋白质反应进行了表征。
SH-SY5Y细胞和iPSC神经元通过增加线粒体DNA拷贝数和转录来应对线粒体DNA转录本翻译抑制。核表达的呼吸链mRNA和蛋白质水平也发生了变化。淀粉样前体蛋白、β淀粉样蛋白、载脂蛋白E、tau蛋白和α-突触核蛋白的生物学特性出现了与AD一致的协同变化以及模型特异性变化。
原发性线粒体功能障碍会诱导细胞器的代偿性反应,改变核基因表达,并以可能重现脑衰老和AD分子现象的方式改变与AD相关的基因和蛋白质的生物学特性。
在AD中,线粒体功能障碍可能是疾病的原因或结果。我们抑制了人类神经细胞和神经元中的线粒体翻译。线粒体和核基因表达以适应性一致的模式发生变化。APP、Aβ、APOE、tau蛋白和α-突触核蛋白的生物学特性发生了与AD一致的变化。线粒体应激创造了一个促进AD病理学发展的环境。