Suppr超能文献

增强多站点 MRI 成像中的自闭症谱系障碍识别:一种多头交叉注意力和多上下文方法,用于解决非协调数据中的可变性。

Enhancing Autism Spectrum Disorder identification in multi-site MRI imaging: A multi-head cross-attention and multi-context approach for addressing variability in un-harmonized data.

机构信息

Mathematics Department, Indian Institute of Technology (IIT) Patna, India.

Department of Electronics Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India.

出版信息

Artif Intell Med. 2024 Nov;157:102998. doi: 10.1016/j.artmed.2024.102998. Epub 2024 Oct 16.

Abstract

Multi-site MRI imaging poses a significant challenge due to the potential variations in images across different scanners at different sites. This variability can introduce ambiguity in further image analysis. Consequently, the image analysis techniques become site-dependent and scanner-dependent, implying that adjustments in the analysis methodologies are necessary for each scanner configuration. Further, implementing real-time modifications becomes intricate, particularly when incorporating a new type of scanner, as it requires adapting the analysis methods accordingly. Taking into account the aforementioned challenge, we have considered its implications for an Autism spectrum disorder (ASD) application. Our objective is to minimize the impact of site and scanner variability in the analysis, aiming to develop a model that remains effective across different scanners and sites. This entails devising a methodology that allows the same model to function seamlessly across multiple scanner configurations and sites. ASD, a behavioral disorder affecting child development, requires early detection. Clinical observation is time-consuming, prompting the use of fMRI with machine/deep learning for expedited diagnosis. Previous methods leverage fMRI's functional connectivity but often rely on less generalized feature extractors and classifiers. Hence, there is significant room for improvement in the generalizability of detection methods across multi-site data, which is acquired from multiple scanners with different settings. In this study, we propose a Cross-Combination Multi-Scale Multi-Context Framework (CCMSMCF) capable of performing neuroimaging-based diagnostic classification of mental disorders for a multi-site dataset. Thus, this framework attains a degree of internal data harmonization, rendering it to some extent site and scanner-agnostic. Our proposed network, CCMSMCF, is constructed by integrating two sub-modules: the Multi-Head Attention Cross-Scale Module (MHACSM) and the Residual Multi-Context Module (RMCN). We also employ multiple loss functions in a novel manner for training the model, which includes Binary Cross Entropy, Dice loss, and Embedding Coupling loss. The model is validated on the Autism Brain Imaging Data Exchange I (ABIDE-I) dataset, which includes data from multiple scanners across different sites, and achieves promising results.

摘要

多站点 MRI 成像由于不同站点的不同扫描仪之间的图像可能存在差异而带来了重大挑战。这种可变性会导致进一步的图像分析产生歧义。因此,图像分析技术变得依赖于站点和扫描仪,这意味着需要针对每个扫描仪配置调整分析方法。此外,实施实时修改变得复杂,特别是在引入新型扫描仪时,因为需要相应地调整分析方法。考虑到上述挑战,我们已经考虑了其对自闭症谱系障碍 (ASD) 应用的影响。我们的目标是最大限度地减少分析中站点和扫描仪变异性的影响,旨在开发一种在不同扫描仪和站点中都有效的模型。这需要设计一种方法,使相同的模型能够在多个扫描仪配置和站点中无缝运行。ASD 是一种影响儿童发育的行为障碍,需要早期发现。临床观察耗时耗力,因此使用 fMRI 与机器/深度学习来加速诊断。以前的方法利用了 fMRI 的功能连接性,但通常依赖于不太通用的特征提取器和分类器。因此,在多站点数据中提高检测方法的通用性方面还有很大的改进空间,这些数据是从具有不同设置的多个扫描仪中获取的。在这项研究中,我们提出了一种交叉组合多尺度多上下文框架 (CCMSMCF),能够对多站点数据集进行基于神经影像学的精神障碍诊断分类。因此,该框架实现了一定程度的内部数据协调,在一定程度上使其不受站点和扫描仪的影响。我们提出的网络 CCMSMCF 由两个子模块构建:多头注意力交叉尺度模块 (MHACSM) 和残差多上下文模块 (RMCN)。我们还以新颖的方式使用多个损失函数来训练模型,其中包括二分类交叉熵、Dice 损失和嵌入耦合损失。该模型在自闭症脑成像数据交换 I (ABIDE-I) 数据集上进行了验证,该数据集包括来自多个站点的不同扫描仪的数据,取得了有希望的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验